
Universidade de São Paulo
Instituto de Matemática,

Estatística e Ciência da Computação
Bacharelado em Ciência da Computação

Automatização do fluxo de submissões de
patches para o kernel Linux através do

kworkflow

João Guilherme Barbosa de Souza

Monografia Final

mac 499 — Trabalho de
Formatura Supervisionado

Supervisor: David de Barros Tadokoro

Cossupervisor: Paulo Roberto Miranda Meirelles

São Paulo

2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

João Guilherme Barbosa de Souza. Automatização do fluxo de submissões de patches
para o kernel Linux através do kworkflow. Monografia (Bacharelado). Instituto de

Matemática, Estatística e Ciência da Computação, Universidade de São Paulo, São Paulo,

2025.

O desenvolvimento do kernel Linux ocorre em um ambiente de grande escala e alta complexidade,

baseado em um modelo de desenvolvimento perpétuo que envolve ciclos contínuos de integração, estabili-

zação e manutenção de versões. Nesse contexto, o processo de submissão e revisão de patches é realizado

majoritariamente por meio de listas de e-mail, o que impõe desafios significativos relacionados à organização

das contribuições, à rastreabilidade das revisões, à sobrecarga dos mantenedores e ao alto custo de entrada

para novos desenvolvedores, além de fragmentar o fluxo de trabalho ao exigir o uso de múltiplas ferramentas

externas. Com o objetivo de mitigar essas limitações, este trabalho propõe a ampliação do Kworkflow (kw),

uma ferramenta de software livre voltada à automação do fluxo de contribuição ao kernel Linux, por meio

da introdução de mecanismos para a gestão e o acompanhamento de patches durante a fase de revisão, con-

cretizados nos módulos kw manage contact, responsável pela organização e disponibilização de informações

sobre mantenedores e revisores, e kw patch-track, voltado ao monitoramento do estado e da evolução dos

patches submetidos às listas de e-mail. As soluções apresentadas integram-se às funcionalidades existentes

do kw, permitindo centralizar informações provenientes das listas de e-mail, automatizar etapas recorrentes

do processo de revisão e oferecer uma visão mais integrada do ciclo de contribuição, contribuindo para a

redução da sobrecarga cognitiva dos desenvolvedores e para a melhoria da eficiência e da transparência

do processo de desenvolvimento do kernel Linux.

Palavras-chave: kernel Linux. kworkflow. kw mange-contacts. kw patch-track. Fluxo de submissão de

patches. Gerenciamento de contatos de email.

Abstract

João Guilherme Barbosa de Souza. Automating the Linux kernel patch submission
flow using kworkflow. Capstone Project Report (Bachelor). Institute of Mathematics,

Statistics, and Computer Science, University of São Paulo, São Paulo, 2025.

The development of the Linux kernel takes place in a large-scale and highly complex environment,

based on a perpetual development model that involves continuous cycles of integration, stabilization, and

maintenance of released versions. In this context, the submission and review of patches are conducted

primarily through mailing lists, which introduces significant challenges related to contribution organiza-

tion, review traceability, maintainer workload, and the high entry barrier for new developers, as well as

fragmenting the workflow by requiring the use of multiple external tools. To address these limitations,

this work proposes the extension of Kworkflow (kw), a Free/Libre and Open Source Software (FLOSS) tool

aimed at automating the Linux kernel contribution process, through the introduction of mechanisms for

managing and tracking patches during the review phase, implemented in the kw manage contact module,

which organizes and provides information about maintainers and reviewers, and the kw patch-track module,

which monitors the status and evolution of patches submitted to mailing lists. The proposed solutions

integrate with existing kw functionalities, enabling the centralization of information from mailing lists,

the automation of recurring review tasks, and the provision of a more integrated view of the contribution

lifecycle, thereby contributing to reduced developer cognitive load and to improvements in the efficiency

and transparency of the Linux kernel development process.

Keywords: kernel Linux. kworkflow. kw mange-contacts. kw patch-track. Patches submission workflow.

email contacts managment.

v

Lista de figuras

1.1 O processo de um patch do kernel (Kroah-Hartman, 2018) 9

2.1 Arquitetura conceitual do kw Fonte: Tadokoro et al., 2025 12

3.1 Diagrama Entidade-Relacionamento do kw manage-contacts 24

3.2 Exemplo do comando “group_show” para um grupo específico. 33

3.3 Exemplo do comando “group_show” sem um grupo especificado. 33

3.4 Diagrama Entidade-Relacionamento do Kw patch_track 37

3.5 Identificando a contribuição Kw patch_track 38

3.6 Resultado do comando send_patch . 39

3.7 Arquivo de um patch com alterações propostas 39

3.8 Abrindo uma contribuição no mutt . 40

3.9 Configurando imap_user e imap_pass para o mutt 41

3.10 Identificando o repositório de uma contribuição 42

3.11 Identificando o mantenedor de um repositório 43

3.12 Atualização manual do status de um patch via Kw patch-track 47

Lista de tabelas

2.1 comandos do kw. Fonte: Reproduzido de Tadokoro et al., 2025, p. 4 . . . 14

vi

Lista de programas

3.1 código select_from antigo. 18

3.2 snippet uso função select_from_antiga. 19

3.3 código select_from novo. 19

3.4 snippet uso função select_from_nova. 20

3.5 código remove_from antigo. 20

3.6 código remove_from novo. 20

3.7 código generate_where_clause utilizado nas novas funções para gerar a

cláusula WHERE SQL a partir dos parâmetros passados. 21

3.8 código update_into. 22

3.9 código generate_set_clause utilizado para permitir especificar quais atri-

butos serão alterados e quais serão seus novos valores. 22

3.10 snippet uso função update_into. 23

3.11 modelagem sql kw manage-contacts . 24

3.12 comandos kw manage contacts. 25

3.13 create_email_group e create_group. 25

3.14 remove_email_group e remove_group. 26

3.15 rename_email_group e rename_group. 28

3.16 add_email_contacts e add_contact_group 29

3.17 show email groups, print_groups_infos e print_contacts_infos. 31

3.18 Função send_patch_main com métodos –to-groups e cc-groups. 33

3.19 opções do comando –send do kw send-patch contendo o to-groups e o

cc-groups. 35

3.20 comandos kw patch-track. 37

3.21 arquivo de configurações mutt. 40

3.22 Código update_contribution_status . 43

3.23 Código update_patch_status . 44

3.24 Código decide_contribution_status . 46

vii

Sumário

Introdução 1

1 Fundamentação Teórica 5
1.1 Software livre . 5

1.1.1 Processo de contribuição em Software Livre 6

1.2 O Kernel Linux . 6

1.2.1 O Modelo de desenvolvimento do kernel Linux 7

1.2.2 Contribuindo para o Kernel Linux 8

2 Kernel Workflow 11
2.1 Arquitetura . 12

2.2 Funcionalidades . 13

2.3 O problema da contribuição no desenvolvimento de software livre 14

3 Contribuições para o kw 17
3.1 CRUD banco de dados . 17

3.2 KW Manage Contacts . 23

3.2.1 Objetivos . 23

3.2.2 Arquitetura . 23

3.2.3 Funcionalidades . 25

3.2.4 Enviar patches para grupos . 33

3.2.5 Resultados . 35

3.3 KW Patch track . 35

3.3.1 Objetivos . 36

3.3.2 Arquitetura . 36

3.3.3 Funcionalidades . 37

3.3.4 Próximos Passos . 47

3.3.5 Resultados . 48

viii

4 Considerações Finais 51

Referências 55

1

Introdução

Computadores são parte central da vida em sociedade, servindo como pilar das relações
modernas. Um Sistema Operacional (SO) é um conjunto de softwares que, de acordo com
Tanenbaum e Bos (2023), realiza duas funções principais: abstração e gerenciamento
do hardware que compõe as máquinas. Isto possibilita a interação entre ser humano e
computador, tanto para a sua programação quanto para o seu uso, de forma simplificada e
eficiente. Em sua composição, os SOs são divididos em diversos componentes específicos,
dentre os quais o kernel (em português, núcleo) é considerado a parte central. Este fato
decorre principalmente das responsabilidades atribuídas a ele, que incluem a gestão da
alocação de recursos entre programas em execução, o escalonamento de atividades críticas
e o gerenciamento da comunicação entre periféricos (mouse, teclado, placas de vídeo
dedicadas, entre outros) e o sistema. Absorver estas e inúmeras outras complexidades
permite, por exemplo, que um simples programa colete input do usuário e o imprima na
tela sem que o programador se preocupe em como o computador faz isto. Por baixo dos
panos, o kernel processa ações do usuário por meio dos dispositivos de entrada, coordena o
uso do processador, memória e outros recursos internos e, por fim, apresenta os resultados
de forma significativa ao usuário, através dos dispositivos de saída. Nesta ilustração, se
faz clara a responsabilidade do kernel de abstrair as especificidades de como realizar tais
operações provendo uma interface de chamada de sistema ao mesmo tempo que gerencia
os recursos sendo usados (Silberschatz et al., 2018).

Dentre as diversas implementações de kernel existentes, o Linux, criado por Linus
Torvalds e lançado em 1991, destaca-se como um dos mais relevantes. Mesmo que não
advogando explicitamente pelo movimento de software livre, Torvalds começou o projeto
Linux como uma alternativa à hegemonia dos SOs proprietários (Torvalds, 1991a; Tor-
valds, 1991b), como o Unix, sendo construído de forma colaborativa por uma comunidade
de desenvolvedores e disponibilizando livre acesso ao seu código e documentação. O kernel
Linux é atualmente o maior projeto de software livre do mundo, utilizado por grandes
empresas de tecnologia e computação, com incontáveis SOs que o usam como kernel (as
chamadas distribuições Linux), rodando em, pelo menos, aproximadamente 58%1 de todos
os servidores web. Do ponto de vista de engenharia de software, após mais de três décadas
desde seu lançamento, o projeto vem tendo um aumento no número de contribuições e
pessoas envolvidas em cada ciclo de desenvolvimento das versões stable kernels (Passos
et al., 2025), sem considerar outros esforços como desenvolvimento downstream.

1 31% constam como SOs desconhecidos e acredita-se que boa parte destes sejam Linux. Fonte: https:
//w3techs.com/technologies/details/os-unix; acessado em 9 de dezembro de 2025.

https://w3techs.com/technologies/details/os-unix
https://w3techs.com/technologies/details/os-unix

2

INTRODUÇÃO

Para sustentar esse ciclo contínuo de desenvolvimento, o kernel Linux adota um mo-
delo rigoroso descrito por Feitelson (Feitelson, 2012) como modelo de desenvolvimento
perpétuo, no qual novas funcionalidades, correções e versões de produção são liberadas
continuamente, ao mesmo tempo em que versões mais antigas permanecem em manuten-
ção. Esse modelo é estruturado em três etapas principais. A primeira, denominada janela
de mesclagem (do inglês, merge window), corresponde ao período em que os patches dos
subsistemas e drivers já testados e validados são enviados à mainline, sob supervisão de
Linus Torvalds, para integração ao kernel principal. Na prática, os contribuidores enviam
patches continuamente aos subsistemas de que participam (por exemplo, IIO ou AMD-
GFX), independentemente da fase do ciclo de releases. Durante a merge window, esses
patches previamente testados e acumulados são submetidos à mainline, dando início ao
processo formal de integração. A partir dessas integrações, é lançada uma versão inicial do
novo kernel, denominada de -rc1, iniciando-se a segunda etapa, o período de estabilização,
durante o qual apenas correções e melhorias incrementais são aceitas.

Por fim, ao atingir o nível de qualidade necessário, a versão final para este ciclo é
oficialmente lançada, e uma equipe reduzida (conhecida como o stable team) passa a atuar
na manutenção contínua desta versão, liberando novas correções enquanto uma nova
janela de mesclagem é aberta.

Fora do ciclo de releases, embora este ocorra de forma consecutiva e estruturada, os
contribuidores enviam suas contribuições continuamente para os subsistemas específicos,
como IIO, AMD-GFX e outros, testando e validando localmente seus patches. Mantenedores
e a comunidade se encarregam de gerir essas contribuições, aplicando revisões e testes,
garantindo a integração adequada com a mainline, e é neste contexto que o processo de
revisão de código se torna mais significativo, mesmo que algumas interações diretas com
Linus ou entre subsistemas ocorram em casos específicos.

Dentro desse fluxo contínuo de contribuição, os patches exigem um processo de prepa-
ração que envolve diversas etapas, como o design — em que são definidas as concepções
iniciais e as implementações necessárias —, a revisão — em que as contribuições são
avaliadas pela comunidade e pelos mantenedores —, e a fase de mesclagem e manutenção,
em que o desenvolvedor continua responsável por eventuais ajustes após a integração.
Considerando a complexidade inerente a um sistema operacional, desenvolver para o
kernel Linux representa um desafio significativo para a maioria dos programadores, em
razão do amplo conhecimento prático e teórico exigido.

Com o intuito de reduzir parte dessas dificuldades, a comunidade desenvolveu ferra-
mentas destinadas à automação dos fluxos de trabalho. Entre elas, destaca-se o Kworkflow

(kw), uma ferramenta de software livre desenvolvida majoritariamente em Bash script, que
tem como objetivo oferecer uma solução unificada para os diversos desafios enfrentados
pelos desenvolvedores do kernel. Para isso, o kw integra e simplifica ferramentas e serviços
amplamente consolidados na comunidade, como Git, o arquivo do Lore e o b4, criando solu-
ções locais quando necessário. A ferramenta organiza-se como um hub de funcionalidades,
recebendo comandos do usuário via linha de comando e redirecionando a execução para o
módulo apropriado, de modo a oferecer uma interface única para todo o processo.

Apesar da ampla estrutura já existente, compreender de forma completa o fluxo de
contribuição ao kernel continua sendo um desafio que o kw busca superar, permanecendo

INTRODUÇÃO

3

em constante desenvolvimento pela comunidade. Além de automatizar o workflow de
desenvolvimento de patches, o kw tem o objetivo de se constituir como um software
científico e, para isso, precisa ser capaz de fornecer rastreabilidade das contribuições, coletar
dados do processo e possibilitar sua análise empírica, tornando possível que pesquisas,
principalmente em Engenharia de Software, sejam desenvolvidas tendo como base a
ferramenta.

Um dos processos ainda em aberto consiste em automatizar a gestão dos patches após
a submissão e antes da aprovação, período em que as contribuições passam pela revisão
dos mantenedores — uma etapa particularmente complexa no modelo de contribuição
por listas de e-mail adotado pelo projeto Linux.

Um dos grandes desafios no desenvolvimento de sistemas de software é coordenar
o trabalho simultâneo de diversos colaboradores, o que envolve a gestão de versões,
submissões e atualizações. Antes do surgimento dos sistemas de controle de versão, esse
processo era realizado manualmente, com métodos como cópias redundantes e conven-
ções de nomenclatura, o que se mostrava inconsistente e de difícil manutenção. Com a
introdução dos Version Control Systems (VCS), tornou-se possível registrar o histórico das
alterações e recuperar versões anteriores. A evolução desses sistemas levou ao surgimento
dos modelos distribuídos, como o Git, que permitiram maior flexibilidade e paralelismo,
possibilitando que cada colaborador mantivesse uma cópia local do código e realizasse
integrações controladas de suas modificações.

Mesmo assim, conforme aponta Greg Kroah Hartman (2016), ferramentas como
GitHub e Gerrit, embora adequadas a projetos menores, ainda apresentam limitações
quando aplicadas a softwares de grande escala, como o kernel Linux. Entre os principais
entraves estão o tempo elevado de revisão, a dificuldade de organização e categorização
de problemas, a baixa acessibilidade das discussões internas e a sobrecarga das listas de
pendências dos mantenedores. Parte dessas dificuldades é mitigada pelo uso de servidores
de e-mail como meio principal de contribuição, que, embora resolvam alguns problemas
de escalabilidade, introduzem outros desafios, como o alto custo de entrada para novos
desenvolvedores, a rastreabilidade limitada das revisões, a sobrecarga das caixas de entrada,
a possibilidade de corrupção de arquivos e a dificuldade de coletar métricas sobre o processo
de desenvolvimento. Além disso, a necessidade de recorrer a ferramentas externas, como
navegadores ou clientes de e-mail, fragmenta o fluxo de trabalho, afastando-se do princípio
do kw de oferecer uma experiência integrada.

A dependência de sistemas de e-mail representa, portanto, uma limitação à proposta
do kw de abranger o processo de desenvolvimento de forma holística. O usuário submete
suas alterações por meio do kw, mas precisa recorrer a outros meios para acompanhar
revisões e retornar à ferramenta para atualizar suas submissões, o que dificulta também a
análise completa do fluxo de contribuição — um dos objetivos centrais do projeto.

Considerando esse cenário, este trabalho dá continuidade ao processo de melhoria
contínua do kw, iniciado por iniciativas anteriores, como Simplificando o processo de

contribuição para o kernel Linux (Neto, 2022) e o Integrating the Kworkflow system with the

Lore archives: Enhancing the Linux kernel developer interaction with mailing lists (Barros
Tadokoro, 2023). A proposta aqui apresentada consiste em oferecer aprimoramentos e
automatizações voltadas à gestão de patches durante o processo de revisão, integrando-se

4

INTRODUÇÃO

às implementações anteriores que introduzem, respectivamente, os fluxos de envio e de
consulta de patches.

5

Capítulo 1

Fundamentação Teórica

Este capítulo discute os fundamentos teóricos levantados para a compreensão do
funcionamento e da gestão do kernel Linux. Nele, são abordados a estrutura de gestão do
projeto e de outros softwares livres, o papel dos mantenedores e o fluxo de desenvolvimento
por meio de patches e árvores de repositórios. Tais definições estabelecem a base conceitual
necessária para detalhar as etapas de integração de código, a organização dos subsistemas
e a dinâmica de manutenção contínua do sistema.

1.1 Software livre
No mercado computacional, dois principais modos dominam o cenário no que se refere

ao desenvolvimento como software proprietário ou software livre. Em geral, define-se
como software proprietário o software desenvolvido de maneira privada, em que apenas a
aplicação é acessível aos usuários. Em contrapartida, o software livre fundamenta-se na
garantia de acesso ao código-fonte e é definido por quatro liberdades estabelecidas pela
Foundation, 2023: a liberdade de executar o programa para qualquer propósito (liberdade
0), de estudar seu funcionamento e adaptá-lo (liberdade 1), de redistribuir cópias (liberdade
2) e de distribuir versões modificadas a terceiros (liberdade 3). Esse conceito abrange
também o movimento Open Source, que, embora apresente motivações distintas voltadas
à eficiência técnica, compartilha o princípio do acesso aberto ao código para viabilizar o
desenvolvimento colaborativo e a transparência do projeto

Historicamente, o mercado computacional era dominado por grandes corporações, que
detinham o monopólio do processo, conhecimento e recursos necessários para o desenvol-
vimento do software como um todo, dificultando o ingresso de outros competidores no
mercado. Nesse cenário, projetos de software livre surgem como um processo disruptivo,
compartilhando o acesso a esse conhecimento, de modo a promover a colaboração e
inovação na indústria (Avatavului et al., 2023).

Esssa abordagens possuem também grande impacto no modo como essas ferramentas
são produzidas, comparativamente, softwares proprietários são geridos por empresas, que
contratam equipes fixas de funcionários para trabalhar em período integral e de maneira
exclusiva no projeto. Dessa maneira, a decisão quanto às novas implementações para

6

1 | FUNDAMENTAÇÃO TEÓRICA

o software são centradas, com o principal objetivo, em muitos casos, sendo o de ganho
financeiro. Essa prática, contudo, muitas vezes implica em que o foco constante seja em
implementações de novas ferramentas ao invés da melhoria do software como um todo,
tornando esses softwares mais propensos a erros e falhas ocasionais. Por outro lado, a
existência de responsáveis legais pelo projeto fazem com que esses softwares contem
em grande parte com a existência de um suporte especializado, característica valorizada
no mercado corporativo.

De maneira oposta, softwares livres são desenvolvidos de maneira colaborativa, con-
tando com a contribuição voluntária de grandes quantidades de desenvolvedores ao redor
do mundo inteiro. Por conta disso, as demandas surgem de forma espontânea, muitas
vezes da necessidade do próprio usuário que depende do software para usos pessoais.
Essa grande quantidade de contribuidores, aliada à dependência mútua destes com o
software, garante atualizações frequentes de segurança e qualidade. Como consequência,
esses sistemas tendem a ser menos propensos a erros, mas não contam com um suporte
dedicado na maioria dos casos.

Hoje, modelos de software livre e proprietário continuam coexistindo no mercado,
sendo constantemente comparados quanto à sua efetividade observada em projetos reais.
Porém, a inegável vantagem do conhecimento colaborativo e do grande volume de con-
tribuição que softwares livres conseguem apresentar, fazem com que hoje ele esteja em
ascenção no mercado computacional, sendo o método de desenvolvimento de diversos
softwares relevantes mundialmente, como no caso do kernel Linux.

1.1.1 Processo de contribuição em Software Livre
Em projetos de software livre, para que a gestão das contribuições seja possível, os

projetos geralmente contam com uma equipe de mantenedores, que é um grupo interno de
desenvolvedores que possuem responsabilidade geral pelo código principal. Desse modo,
para que sejam integradas, as contribuições enviadas pelos contribuidores precisam passar
por revisões por parte dos mantenedores para garantir que atendam aos requisitos técnicos
definidos para o projeto. De acordo com Tan et al., 2020, os mantenedores devem avaliar
principalmente se uma contribuição é necessária, se uma implementação apresenta falhas
ou se existem eventuais melhorias na forma como a solução foi feita.

Em alguns casos, principalmente devido ao crescimento dos projetos, torna-se necessá-
rio também uma divisão em componentes do sistema principal, de modo que cada parte
possui seus mantenedores dedicados. Dessa maneira, para que as contribuições sejam
feitas de maneira correta, elas precisam ser enviadas diretamente para o responsável do
subsistema que será alterado.

1.2 O Kernel Linux
Em um computador, o Sistema Operacional é a parte responsável por lidar com as

interações entre o hardware e o software, permitindo, de maneira eficiente, a interação
final máquina-usuário. Para que isso seja possível, o sistema operacional precisa ser
dividido em diversas partes, dentre essas, o kernel, considerado o núcleo dos sistemas

1.2 | O KERNEL LINUX

7

operacionais. Em geral, o kernel é um programa que opera a todo momento e é responsável
pelo gerenciamento dos processos do sistema, alocando recursos para outros programas
em atividade conforme a necessidade e prioridade de cada um.

Dentre os muitos sistemas de kernels existentes, o kernel Linux é um projeto desenvol-
vido por Linus Torvalds, em 1991, como uma resposta direta à hegemonia e às restrições
dos sistemas operacionais proprietários da época. Enquanto o mercado era dominado pelo
modelo fechado do Unix, Torvalds propôs uma alternativa fundamentada no livre acesso
ao código e na construção descentralizada.

Essa oposição ao modelo proprietário foi um dos motores que permitiu ao Linux escalar
através de contribuições globais, superando as limitações de desenvolvimento das empresas
tradicionais. Hoje, o kernel Linux é o maior projeto de software livre do mundo, utilizado
por algumas das maiores empresas de tecnologia, software e computação no mercado,
possuindo diversas distribuições e constituindo aproximadamente 57% dos websites na
internet cujos sistemas operacionais puderam ser identificados.1

1.2.1 O Modelo de desenvolvimento do kernel Linux
Ainda que tenha sido lançado há mais de três décadas, novas versões do kernel Linux

continuam sendo lançadas até hoje. Cada uma das versões do Linux é construída através
da contribuição de diversos desenvolvedores ao redor do mundo, por meio da submissão
de patches

2 de melhorias que são integrados à versão principal para o desenvolvimento de
futuras versões. De acordo com Feitelson, 2012, esse desenvolvimento do kernel Linux
segue um modelo de desenvolvimento perpétuo, no qual novas funcionalidades, correções
e versões de produção são liberadas continuamente, havendo também a manutenção de
versões mais antigas. Segundo a The Linux Kernel Documentation, 2023, esse processo
divide-se em três etapas bem distintas: a janela de mesclagem, o período de estabilização
e a manutenção contínua.

Janela de Mesclagem (Merge Window) Durante a primeira etapa, a maior parte das
alterações será integrada à nova versão do kernel. Essas mesclagens não ocorrem de forma
imediata; elas ocorrem a partir de patches que foram previamente preparados, testados
e coletados em árvores de subsistemas ao longo de semanas ou meses. Esse trabalho
prévio de organização pelos mantenedores garante que, ao abrir a janela, o código já
tenha passado por um ciclo de maturação inicial. Com base nessa nova versão, o primeiro
kernel RC (Release Candidate) será lançado, encerrando a janela de mesclagem e iniciando
a próxima etapa.

Período de Estabilização Durante a segunda etapa, apenas patches que sirvam para
correção de bugs deverão ser enviados e novas versões de RC serão lançadas periodicamente
até que uma versão estável seja atingida. De forma objetiva, uma versão estável é atingida

1 Fonte: https://w3techs.com/technologies/details/os-linux
2 No contexto de desenvolvimento do kernel, um patch é um arquivo de texto que descreve as diferenças entre

duas versões do código-fonte. Essas contribuições são enviadas via e-mail para listas de discussão públicas,
contendo o código alterado e uma descrição das mudanças (o commit message), para serem revisadas pelos
mantenedores antes da integração.

https://w3techs.com/technologies/details/os-linux

8

1 | FUNDAMENTAÇÃO TEÓRICA

quando todas as regressões — erros conhecidos que haviam sido superados por versões
anteriores e foram reintroduzidos durante a janela de mesclagem — são corrigidas. O foco
aqui é estritamente a confiabilidade do código integrado anteriormente.

Manutenção Contínua (Stable Kernels) Contudo, dado o tempo limitado em que as
etapas precisam ocorrer, eliminar todas as regressões das versões estáveis nem sempre
é um desafio que pode ser atingido plenamente antes do lançamento. Por conta desse
fato, após a criação da versão estável, o projeto entra na fase dos stable kernels. Nesta
terceira etapa, uma equipe de desenvolvedores é designada para a manutenção contínua,
lançando novas atualizações ocasionais (como as revisões pontuais da versão principal)
com correções críticas para essa versão por um período de tempo, enquanto a janela de
mesclagem se reinicia para a nova versão.

1.2.2 Contribuindo para o Kernel Linux
Assim como outros softwares livres, o kernel Linux também apresenta uma divisão

lógica com base no seu conjuntos de subsistemas, como, por exemplo, os sistema de rede,
gerenciamento de memória, dispositivos de vídeo, etc. Dentro desses subsistemas, cada
mantenedor responsável administra um repositório de fontes do kernel, gerindo os patches

enviados ao seu subsistema. Ainda segundo a documentação oficial (The Linux Kernel
Documentation, 2023), eventualmente, esses subsistemas podem ser identificados de
modo que um subsistema principal seja constituído por subsistemas menores, como, por
exemplo, o subsistema de rede, que agrega também os repositórios dedicadas a drivers de
dispositivos de rede cabeadas e de redes sem fio. Desse modo, além dos patches recebidos
diretamente por contribuidores, os mantenedores podem receber também receber patches

já aprovados por outros mantenedores, formando uma cadeia de confiança até que os
patches cheguem a ser integrados (Figura 1.1).

Para gerir esse modelo de contribuição, o código do kernel Linux é organizado em
um modelo de repositórios separados, conhecidos como árvores do kernel (kernel trees),
contendo versões específicas do projeto, com suas respectivas finalidades e responsáveis.
A princípio, cada subsistema do kernel possui uma árvore específica, gerida pelos mante-
nedores responsáveis pela seção do projeto, nas quais novas contribuições aceitas serão
acumuladas e testadas previamente. Posteriormente, para que as novas versões sejam
construídas, utiliza-se como base a árvore mainline — o repositório central e oficial do
kernel, administrado diretamente por Linus Torvalds, que contém o código da versão em
desenvolvimento e das futuras releases. Durante a janela de mesclagem, são construídas as
árvores -next, que funcionam como árvores de integração ramificadas da mainline para
reunir as novas submissões dispersas nas diversas árvores de subsistemas. A partir dela,
após a janela de mesclagem e durante o período de estabilização, serão criadas as árvores
de estabilização, nas quais serão organizadas as correções da nova versão até que, por fim,
essas alterações venham a ser consolidadas na árvore mainline definitiva.

Em paralelo à execução das etapas formais do ciclo, o desenvolvimento nos subsistemas
específicos, a exemplo do IIO e AMD-GFX, ocorre de forma ininterrupta. Antes da submis-
são aos mantenedores, os contribuidores realizam a validação local dos patches, iniciando
um fluxo de trabalho que precede a janela de mesclagem. A gestão dessas contribuições

1.2 | O KERNEL LINUX

9

Figura 1.1: O processo de um patch do kernel (Kroah-Hartman, 2018)

pela comunidade e pelos mantenedores envolve ciclos constantes de testes e revisões,
assegurando que o código esteja estabilizado para a integração na mainline. (The Linux
Kernel Documentation, 2023).

Os principais estágios que um patch deve passar, são:

1. Design: Nesta etapa, serão levantados os requisitos do patch e a forma com que
serão atingidos, ou seja, a identificação dos seus objetivos e as necessidades técnicas
que devem constar nessa implementação.

2. Revisão antecipada: Publicação dos patches na lista de discussão relevante para que
desenvolvedores possam responder com comentários e ajudar a revelar quaisquer
problemas iniciais.

3. Revisão mais ampla: Antes que o patch seja considerado para inclusão na versão
principal, ele deve ser aceito por um mantenedor de subsistema, que o incluirá nas
árvores -next. Com essa etapa, revisões mais elaboradas e possíveis problemas de
integração com outras implementações poderão ser verificados.

4. Mesclagem e manutenção de longo prazo: Ainda que o patch possa ser mesclado
e chegar efetivamente à versão estável do kernel, futuros problemas podem vir a
aparecer durante essas fases, dessa forma, o desenvolvedor original deve continuar
a assumir a responsabilidade da manutenção do código no futuro.

11

Capítulo 2

Kernel Workflow

Atualmente, considerada toda a complexidade envolvida em um sistema operacional,
desenvolver para o kernel Linux pode ser uma tarefa extremamente desafiadora para
a maioria dos desenvolvedores. Além do conhecimento teórico sobre a arquitetura do
sistema, diversos conhecimentos práticos precisam ser empregados antes que qualquer
contribuição possa, de fato, ser iniciada. A exemplo, por se tratar do núcleo de um sistema
operacional, o domínio de ferramentas e técnicas para criação de ambientes seguros de
teste, como o uso de máquinas virtuais e ambientes isolados, se fazem necessários para
validar alterações sem comprometer o sistema principal do desenvolvedor. Além disso,
é preciso saber construir e implantar esses ambientes — envolvendo etapas de build e
deploy — de modo a reproduzir com precisão o comportamento do kernel em diferentes
cenários e arquiteturas dos computadores.

Tendo conhecimento desses fatos, diversas ferramentas são construídas pela comuni-
dade para automatização desses fluxos. Dentre elas, o Kworkflow (kw)1 é uma ferramenta
de software livre, desenvolvida principalmente em Bash, que surge com o objetivo de
apresentar uma solução unificada para as diversas dificuldades que desenvolvedores do
kernel podem encontrar. Além de automatizar o workflow de desenvolvimento de patches,
um dos objetivos do kw é se constituir também como um software científico, permitindo que
pesquisadores de Engenharia de Software e áreas correlatas estudem o desenvolvimento
do kernel Linux de forma empírica e próxima da prática.

Para que o kw cumpra esse papel científico, é necessário que ele forneça mecanismos
de coleta e registro de dados do processo de contribuição, garanta rastreabilidade das
alterações e interações entre desenvolvedores, possibilite a reconstrução de cenários de
revisão de código e permita a análise estatística ou qualitativa dos fluxos de trabalho. Essas
funcionalidades tornam possível investigar padrões de colaboração, eficiência de processos,
dificuldades enfrentadas pelos contribuidores e comportamento de manutenção de software
de larga escala, transformando o kw em uma ferramenta de pesquisa robusta, além de um
utilitário prático para o desenvolvimento de patches. Promovendo assim um ambiente
de desenvolvimento mais simples e rápido, reduzindo a carga de conhecimento prévio

1 O repositório do projeto está disponível em https://github.com/kworkflow/kworkflow e o seu sítio oficial
em https://kworkflow.org/.

https://github.com/kworkflow/kworkflow
https://kworkflow.org/

12

2 | KERNEL WORKFLOW

necessária para novos desenvolvedores e consolidando um meio pelo qual seja possível
medir de forma precisa o ciclo de contribuição. Possibilitando ainda que novas soluções
possam ser planejadas e que o impacto real das ferramentas já empregadas seja mensurado.

2.1 Arquitetura
Para que o software seja capaz de agrupar tantas ferramentas, o kw segue uma or-

ganização estrutural específica em 5 partes:

kw
(hub)

deploy build send-
patch config ...

kw_string kw_db ...

FEATURES

kernel_
install ...

LIBRARIESPLUGINS

Figura 2.1: Arquitetura conceitual do kw Fonte: Tadokoro et al., 2025

1. Hub: Para permitir que todas as ferramentas do kw sejam oferecidas através de uma
interface única, o software utiliza-se de um arquivo central, o kw.sh. Esse arquivo
atua como um hub — representado pela cor verde na Figura 2.1 — sendo o responsável
por receber os comandos iniciais dos usuários no terminal e redirecionar a execução
para a ferramenta especificada.

2. Componentes: Cada ferramenta do kw possui um arquivo principal que contém o
processamento central do comando. Esta camada corresponde à seção azul denomi-
nada FEATURES na Figura 2.1, incluindo a lista de comandos específicos para cada
funcionalidade e uma seção de ajuda para orientação dos usuários.

3. Bibliotecas: O kw utiliza um esquema de bibliotecas para permitir o comparti-
lhamento de código genérico entre diferentes ferramentas. Conforme ilustrado na
seção amarela (LIBRARIES) da Figura 2.1, essas implementações são agrupadas por
similaridade de contexto, como manipulação de textos, operações em banco de dados
ou tratamento de data e hora.

4. Plugins: Códigos dependentes de contextos externos ou com alta volatilidade de
desenvolvimento são isolados em arquivos específicos. Estes plugins, identificados na

2.2 | FUNCIONALIDADES

13

cor vermelha (PLUGINS) na Figura 2.1, permitem que o código principal permaneça
estável, aproveitando os métodos declarados independentemente das alterações nas
implementações internas desses plugins.

5. Documentação: Para manter o registro das implementações e informações necessá-
rias para colaboradores, o kw mantém um sistema de documentação, que também é
utilizado para a construção do blog da ferramenta.

2.2 Funcionalidades

Para compor o seu ferramental e permitir um ambiente holístico, o kw utiliza-se da
integração e simplificação de automações consolidadas na comunidade, como o Git, Lore,
b4, e outros, desenvolvendo soluções locais quando necessário. De acordo com Barros
Tadokoro, 2023, as automações desenvolvidas para o kw dividem-se em dois tipos, as
práticas e as indiretas. As implementações práticas afetam diretamente o desenvolvimento
do kernel, como o kw build e o kw deploy, utilizados para a criação e aplicação da imagem
com as alterações do desenvolvedor. Adicionalmente, existem as ferramentas indiretas,
que impactam o fluxo de trabalho de forma abrangente, como o kw send-patch e o kw-patch

hub, voltados, respectivamente, à submissão e consulta de patches no lore.

Por se tratar de uma ferramenta de terminal, os comandos do kw precisam ser invocados
de forma escrita pelo usuário, seguindo, a seguinte estrutura: kw <comando> <parâmetros>.
Até o momento, as principais funcionalidades existentes na ferramenta, são:

14

2 | KERNEL WORKFLOW

Command Category Description
build kernel build/deploy Build kernel and modules
deploy kernel build/deploy Deploy kernel and modules
kernelconfig-
manager

kernel build/deploy Manage .config files

env kernel build/deploy Manage different environments for
same kernel tree

bd kernel build/deploy Build and Deploy kernel and modu-
les

send-patch patch submission Send patches via email
maintainers patch submission get_maintainers.pl wrapper
codestyle patch submission checkpatch.pl wrapper
remote target machine Manage machines in the network
vm target machine QEMU wrapper
ssh target machine ssh wrapper
device target machine Show hardware information
debug code inspection Linux debug utilities
explore code inspection Explore string patterns
diff code inspection Diff files
init kw management Initialize kw kernel tree
config kw management Set kw configs
self-update kw management Self-update mechanism
backup kw management Save and restore kw data
clear-cache kw management Clear kw cache
patch-hub misc TUI for patches from lore.kernel.org
drm misc DRM specific utilities
pomodoro misc Pomodoro technique
report misc Show usage statistics

Tabela 2.1: comandos do kw. Fonte: Reproduzido de Tadokoro et al., 2025, p. 4

Apesar da grande estrutura, compreender de forma completa o fluxo do desenvolvedor
do kernel ainda é um desafio que o kw busca superar, estando em constante processo
de desenvolvimento por parte da sua comunidade. Um dos processos em abertos, é o de
conseguir automatizar o fluxo de gestão dos patches após a submissão e antes da aprovação,
na qual os patches passam pelo processo de revisão por parte dos mantenedores, que se
torna um desafio em particular durante a contribuição para o kernel Linux dado o seu
modelo de contribuição não trivial por listas de email.

2.3 O problema da contribuição no desenvolvimento
de software livre

Um grande desafio encontrado durante a construção de sistemas de software é a
dificuldade de conciliar o trabalho simultâneo dos diversos colaboradores, o que envolve

2.3 | O PROBLEMA DA CONTRIBUIÇÃO NO DESENVOLVIMENTO DE SOFTWARE LIVRE

15

a capacidade de coordenar as diferentes versões do projeto e as inúmeras submissões de
alteração para a versão principal. Antes do advento dos sistemas de controle de versão,
os programadores dependiam de métodos manuais para gerenciar suas modificações de
código. Eles costumavam fazer backups regulares de seus arquivos de código ou adotar
convenções de nomenclatura para distinguir entre as várias versões. Esse processo era
bastante inconsistente e difícil de gerenciar, especialmente quando alguns desenvolvedores
estavam trabalhando no mesmo projeto (Devineni, 2020).

Gerenciar as versões de um software se torna um problema ainda maior dependendo do
tamanho total do software, do número de contribuidores e da quantidade de contribuições
sendo realizadas nele de maneira simultânea. No kernel, por exemplo, a versão 6.13,
lançada em 19/01/2025, contou com mais de 206 contribuições por dia por parte de 2085
colaboradores, resultando em um código fonte final com mais de 39 milhões de linhas
(Kroah-Hartman, 2025). Segundo a tendência, esses números devem seguir aumentando
de forma constante conforme novas versões forem sendo desenvolvidas.

Buscando superar parte dessas dificuldades e melhorar o processo colaborativo de
desenvolvimento de software, foram desenvolvidos os sistemas de controle de versão.
Ainda segundo Devineni, 2020, os primeiros Version Control Systems (VCS), permitiam
que os desenvolvedores mantivessem um histórico das alterações realizadas nos arquivos,
o que facilitava a reversão de mudanças e oferecia visibilidade sobre a evolução do código.
No entanto, o potencial colaborativo ainda era limitado, exigindo muitos acordos e gestões
manuais por parte dos colaboradores.

Como segunda opção, surgem os Concurrent Versions System (CVS), baseados em um
modelo de repositório central. Nele, os desenvolvedores podiam obter os arquivos, aplicar
suas modificações e submetê-las novamente ao repositório. Esse modelo contribuiu para
maior agilidade em equipes de desenvolvimento, ao permitir que várias pessoas trabalhas-
sem simultaneamente na mesma base de código. Ainda assim, em projetos de grande porte
ou com equipes distribuídas geograficamente, os sistemas centralizados apresentavam
limitações no gerenciamento eficiente do trabalho.

Por fim, surgem os modelos mais utilizados atualmente, os Distributed Concurrent

Versions System - DVCS, como o Git. Esses sistemas, ao contrário da versão anterior,
distribuía as cópias do código central entre os desenvolvedores, permitindo um método
mais flexível de colaboração. Como cada colaborador poderia ter uma versão local do
código, as mudanças realizadas por ele ao código principal poderiam ser administradas
localmente antes de serem integradas, permitindo trabalhos offline e que alterações fossem
submetidas em lotes ao invés de individualmente.

Contudo, de acordo com Greg Kroah Hartman, 2016, ainda que softwares como
github,2 gerrit

3 ou outros DVCS possam ser úteis para gerir o fluxo de submissões de
softwares menores, eles ainda apresentam muitos problemas para escalar para softwares
maiores. Dentre os principais motivos, são citados, por exemplo, a maneira como o fluxo
para revisão desses softwares é mais demorado e diminui a produtividade dos mantenedores,
a dificuldade de gerenciar e categorizar os inúmeros problemas e submissões com os

2 https://github.com
3 https://www.gerritcodereview.com

16

2 | KERNEL WORKFLOW

recursos oferecidos, a maneira como as discussões e comentários dentro da comunidade
são pouco acessíveis à outros contribuidores, dificultando a propagação de informação e
gerando retrabalho, a dificuldade para que desenvolvedores possam se conectar à listas de
discussões e serem notificados sempre que uma novidade relevante ocorra, entre outros.
Parte desses problemas da comunidade, porém, ainda segundo Greg Kroah Hartman,
2016, são solucionados ao se substituir os softwares de DVCS por servidores de email,
como é feito para a contribuição do kernel.

Essa substituição, entretanto, também apresenta suas dificuldades, uma vez que, sendo
um sistema com perspectiva muito mais abrangente, servidores de email não apresentam
funcionalidades e melhorias para esse fluxo. Entre os diversos problemas enfrentados pelo
usuário, destacam-se principalmente o grande overhead inicial para novos contribuidores,
a má rastreabilidade do históricos de submissões e revisões, a escalabilidade limitada,
sobrecarregando a lista de email de alguns mantenedores, problemas de corrupção de
arquivos, e a dificuldade de se capturar métricas. Além disso, é também nesse fluxo que
ocorre a revisão dos patches, ou seja, a comunicação direta entre desenvolvedores e mante-
nedores, sendo essencial que as respostas e notificações ocorram de forma rápida, dado que
submissões realizadas durante o período de estabilização ou durante a janela de mesclagem
precisam ser avaliadas dentro desses períodos fixos de tempo.

Dada a natureza dessa submissão, em muitos casos, isso implica ainda que os desenvol-
vedores dependam de ferramentas externas, que ainda precisariam ser configuradas, ou do
próprio navegador para checar a lista de e-mails em softwares acessíveis através da web,
como o gmail, para responder mensagens e acompanhar o status dos patches, sendo um
desafio ainda maior quando o endereço de e-mail utilizado para submissões é reutilizado
para outros contextos, pois isso aumenta a complexidade de filtrar, organizar e priorizar
as mensagens relevantes, gerando ruído na comunicação e dificultando a identificação
rápida de respostas e revisões. Por fim, da perspectiva do kw, a dependência de sistemas
de email também representa uma fragmentação no fluxo do software e em seu princípio de
englobar de forma holística o processo de desenvolvimento. Isso porque o usuário submete
alterações pelo Kworkflow, mas precisa recorrer a outros meios para acompanhar revisões
e depois retornar para atualizar suas submissões, além de impedir a análise completa do
fluxo de contribuição, que é um dos objetivos futuros do projeto.

17

Capítulo 3

Contribuições para o kw

Esse trabalho dá continuidade à um processo de melhoria continua ao software do
kw, iniciada anteriormente através de outros trabalhos como o Simplificando o processo de

contribuição para o kernel Linux de Neto (2022), que estrutura e refatora a documentação
da ferramenta, implementa a versão inicial do banco de dados e também da funcionalidade
kw mail, posteriormente renomeada para kw send_patch, utilizada para submissão de
patches através do envio de email’s; e também o trabalho Integrating the Kworkflow system

with the Lore archives: Enhancing the Linux kernel developer interaction with mailing lists,
desenvolvido por Barros Tadokoro (2023), que implementa o patch-hub – interface de
terminal para os arquivos Lore, permitindo o acesso à uma lista oficial de discussões e
patches do Kernel Linux.

Como proposta, as contribuições oferecidas por esse trabalho focam em oferecer
melhorarias e automatizações para a gestão de patches submetidos por parte dos contri-
buidores do kernel linux enquanto estão sob processo de revisão, integrando-se ao fluxo
de implementações de seus predecessores que, respectivamente, introduzem o processo
de envio e de consulta de patches já enviados.

3.1 CRUD banco de dados
Para poder dar suporte para suas diversas funcionalidades, o kw conta com um sistema

de banco de dados, desenvolvido em SQLite3, que armazena informações necessárias para
o funcionamento, principalmente, das ferramentas kw pomodoro e kw patch-hub, além de
possuir dados de telemetria sobre a utilização do software pelos usuários. Para garantir
a consistência e segurança dos dados entre o banco de dados e a aplicação, é crucial
desenvolver operações que lidem com operações de manipulação, como inserção, leitura,
atualização e deleção de dados (conhecidas como CRUD - create, read, update, delete). Essas
operações servem como interface entre as diferentes partes do sistema, permitindo uma
interação eficaz e garantindo que os dados sejam gerenciados de forma precisa e confiável.

Contudo, deixar instruções SQL dispersas diretamente no código de aplicação não é
considerado uma boa prática de engenharia de software, pois dificulta a manutenção, a
legibilidade e a evolução do sistema. O ideal é encapsular o acesso ao banco de dados em

18

3 | CONTRIBUIÇÕES PARA O KW

funções ou camadas de abstração que forneçam operações de mais alto nível, reduzindo
o acoplamento entre a lógica de negócio e as consultas.

No caso do Kworkflow, desenvolvido em Bash, tal abordagem é limitada pela própria
linguagem, que não dispõe de mecanismos nativos para abstração de consultas SQL. Assim,
a interação com o banco de dados precisa ser realizada diretamente por meio de comandos
de script, o que torna essa separação menos natural, embora ainda desejável para organizar
e isolar responsabilidades.

Para tal, o software contava com algumas funções implementadas que permitiam a
interação com o banco de dados, mas que não isolavam suficientemente o código e as
instruções de acesso aos dados, tornando necessário o uso de comandos SQL em alguns
casos. Esse cenário era visível nos comandos de seleção originais (Programa 3.1), que
recebiam trechos na linguagem SQL com a cláusula where, utilizada para especificar quais
critérios devem atender os parâmetros selecionados ou removidos, como exemplificado
no Programa 3.2.

Programa 3.1 código select_from antigo.

function select_from()
{

local table="$1"
local columns="${2:-"*"}"
local pre_cmd="$3"
local order_by="$4"
local flag=${5:-'SILENT'}
local db="${6:-$DB_NAME}"
local db_folder="${7:-$KW_DATA_DIR}"
local db_path
local query
local cmd

db_path="$(join_path "$db_folder" "$db")"

if [[! -f "$db_path"]]; then
complain 'Database does not exist'
return 2

fi
if [[-z "$table"]]; then
complain 'Empty table.'
return 22 # EINVAL

fi

query="SELECT $columns FROM $table ;"
if [[-n "${order_by}"]]; then
query="SELECT $columns FROM $table ORDER BY ${order_by} ;"

fi

cmd="sqlite3 -init ${KW_DB_DIR}/pre_cmd.sql -cmd \"${pre_cmd}\" \"${db_path}\"
-batch \"${query}\""↪

cmd_manager "$flag" "$cmd"
}

3.1 | CRUD BANCO DE DADOS

19

Programa 3.2 snippet uso função select_from_antiga.

is_on_database="$(select_from "kernel_config WHERE name IS '${config_name}'" '' ''
'' "$flag")"↪

Além disso, especificamente nos comandos de seleção (Programa 3.3), também foi
implementado um parâmetro adicional para permitir o uso da clausula ordered_by, que
possibilita especificar uma ordenação para os dados retornados com base em um atributo
comparável entre eles. O resultado dessa transição para o uso de parâmetros pode ser
observado no Programa 3.4.

Programa 3.3 código select_from novo.

function select_from()
{

local table="$1"
local columns="${2:-"*"}"
local pre_cmd="$3"
local _condition_array="$4"
local order_by=${5:-''}
local flag=${6:-'SILENT'}
local db="${7:-"$DB_NAME"}"
local db_folder="${8:-"$KW_DATA_DIR"}"
local where_clause
local db_path
local query

db_path="$(join_path "$db_folder" "$db")"

if [[! -f "$db_path"]]; then
complain 'Database does not exist'
return 2

fi
if [[-z "$table"]]; then
complain 'Empty table.'
return 22 # EINVAL

fi

if [[-n "$_condition_array"]]; then
where_clause="$(generate_where_clause "$_condition_array")"

fi

query="SELECT ${columns} FROM ${table} ${where_clause} ;"

if [[-n "${order_by}"]]; then
query="${query::-2} ORDER BY ${order_by} ;"

fi

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" -cmd \"${pre_cmd}\" \"${db_path}\"
-batch \"$query\""↪

cmd_manager "$flag" "$cmd"
}

20

3 | CONTRIBUIÇÕES PARA O KW

Programa 3.4 snippet uso função select_from_nova.

condition_array=(['name']="${config_name}")
is_on_database="$(select_from 'kernel_config' '' '' 'condition_array' '' "$flag")"

Por fim, essa alteração também permitiu que comparações de desigualdades fossem
feitas de forma mais abrangente e ordenada, visto que na função de remoção antiga
(Programa 3.5) apenas operações de comparação eram possíveis e que na função de seleção
apenas com o código SQL explícito. Para modernizar esse fluxo, implementou-se a nova
função de remoção (Programa 3.6) baseada na lógica de geração automática de cláusulas
do Programa 3.7.

Programa 3.5 código remove_from antigo.

function remove_from()
{

db_path="$(join_path "${db_folder}" "$db")"
if [[! -f "${db_path}"]]; then
complain 'Database does not exist'
return 2
fi

if [[-z "$table" || -z "${!_condition_array[*]}"]]; then
complain 'Empty table or condition array.'
return 22 # EINVAL
fi

for column in "${!_condition_array[@]}"; do
where_clause+="$column='${_condition_array["${column}"]}'"
where_clause+=' AND '
done
Remove trailing ' AND '
where_clause="${where_clause::-5}"

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" \"${db_path}\" -batch \"DELETE
FROM ${table} WHERE ${where_clause};\""↪

cmd_manager "$flag" "$cmd"
}

Programa 3.6 código remove_from novo.

function remove_from()
{
local table="$1"
local _condition_array="$2"
local db="${3:-"${DB_NAME}"}"
local db_folder="${4:-"${KW_DATA_DIR}"}"
local flag=${5:-'SILENT'}

local db_path

cont ⟶

3.1 | CRUD BANCO DE DADOS

21

⟶ cont

db_path="$(join_path "${db_folder}" "$db")"
if [[! -f "${db_path}"]]; then

complain 'Database does not exist'
return 2

fi

if [[-z "$table" || -z "$_condition_array"]]; then
complain 'Empty table or condition array.'
return 22 # EINVAL

fi

where_clause="$(generate_where_clause "$_condition_array")"
query="DELETE FROM ${table} ${where_clause} ;"

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" \"${db_path}\" -batch \"$query\""
cmd_manager "$flag" "$cmd"

}

Programa 3.7 código generate_where_clause utilizado nas novas funções para gerar a
cláusula WHERE SQL a partir dos parâmetros passados.

function generate_where_clause()
{

local -n condition_array_ref="$1"
local clause
local relational_op='='
local attribute
local where_clause="WHERE "
local value

for clause in "${!condition_array_ref[@]}"; do
attribute="$(cut --delimiter=',' --fields=1 <<< "$clause")"
value="${condition_array_ref["${clause}"]}"

if [["$clause" =~ ","]]; then
relational_op=$(cut --delimiter=',' --fields=2 <<< "$clause")

fi

where_clause+="${attribute}${relational_op}'${value}'"
where_clause+=' AND '

done

printf '%s' "${where_clause::-5}" # Remove trailing ' AND '
}

Além disso, outra implementação desenvolvida nessa etapa, foi a implementação do
novo método update_into (Programa 3.8), que permitia a alteração pontual de algum
atributo dentro de uma entidade do banco de dados e da função generate_set_clause (Pro-
grama 3.9), utilizada para gerar a clausula set do SQL, que define quais conjuntos de
atributos serão alterados e quais os novos valores para esses atributos. Essa implementação
também faz uso da função generate_where_clause, uma vez que na maioria das alterações

22

3 | CONTRIBUIÇÕES PARA O KW

se faz necessário especificar qual entidade/conjunto de entidades receberá as alterações,
como exemplificado no Programa 3.10.

Programa 3.8 código update_into.

function update_into()
{

db_path="$(join_path "$db_folder" "$db")"

if [[! -f "$db_path"]]; then
complain 'Database does not exist'
return 2

fi

if [[-z "$table"]]; then
complain 'Empty table.'
return 22 # EINVAL

fi

if [[-z "$_condition_array" || -z "$_updates_array"]]; then
complain 'Empty condition or updates array.'
return 22 #EINVAL

fi

where_clause="$(generate_where_clause "$_condition_array")"
set_clause="$(generate_set_clause "$_updates_array")"

query="UPDATE ${table} SET ${set_clause} ${where_clause} ;"

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" -cmd \"${pre_cmd}\" \"${db_path}\"
-batch \"$query\""↪

cmd_manager "$flag" "$cmd"
}

Programa 3.9 código generate_set_clause utilizado para permitir especificar quais atribu-
tos serão alterados e quais serão seus novos valores.

function generate_set_clause()
{

local -n condition_array_ref="$1"
local attribute
local set_clause
local value

for attribute in "${!condition_array_ref[@]}"; do
value="${condition_array_ref["${attribute}"]}"
set_clause+="${attribute} = '${value}'"
set_clause+=', '

done

printf '%s' "${set_clause::-2}" # Remove trailing ', '
}

3.2 | KW MANAGE CONTACTS

23

Programa 3.10 snippet uso função update_into.

update one row using one unique attribute
condition_array=(['name']='name19')
updates_array=(['attribute1']='att1.2' ['attribute2']='att2.2' ['rank']='10')
update_into 'fake_table' 'updates_array' '' 'condition_array'

A padronização dessas operações de CRUD e o isolamento das consultas SQL em
funções parametrizadas foram fundamentais para garantir a escalabilidade do sistema. Esta
base técnica de persistência de dados permitiu o desenvolvimento de funcionalidades que
exigem um gerenciamento mais complexo de informações, como a automação de contatos
e grupos, que será detalhada na seção seguinte.

3.2 KW Manage Contacts
No fluxo atual, a submissão de patches pode ser realizada por meio da ferramenta kw

send-patch. Este comando recebe como parâmetros a lista de commits a serem enviados, os
usuários responsáveis — geralmente mantenedores — e as listas de discussão do subsistema
pertinente que devem ser notificadas da contribuição. A partir desses dados, o kw gera as
modificações necessárias e utiliza internamente o git send-email para a transmissão das
mensagens aos destinatários. Essa abordagem reflete a função do kw como um hub, que
agrega e simplifica o uso de ferramentas já consolidadas na comunidade, automatizando
etapas manuais e aprimorando o fluxo de submissão do desenvolvedor.

Ao lidar com e-mails, é comum que existam grupos de destinatários recorrentes durante
a submissão de patches. Atualmente, o kw disponibiliza a funcionalidade kw maintainers

que, ao utilizar internamente o script get_maintainers.pl do kernel, lista os mantenedores
responsáveis pelos subsistemas alterados. Embora essa ferramenta facilite a identificação
dos responsáveis oficiais, ela não contempla grupos não oficiais ou externos, como equipes
de trabalho e colaboradores de projetos específicos. Diante disso, surgiu a necessidade
de uma ferramenta integrada ao fluxo do kw para o gerenciamento de grupos de e-mail,
visando garantir maior praticidade e consistência na comunicação do desenvolvedor.

3.2.1 Objetivos
Assim, o objetivo principal foi o de criar um sistema que permitisse gerenciar grupos

de e-mail de forma centralizada, com armazenamento persistente no banco de dados do kw
e acesso através de interface em linha de comando (CLI). Permitindo, através disso, que o
usuário pudesse cadastrar contatos, organizar esses contatos em grupos e, posteriormente,
incluir automaticamente tais grupos ao enviar patches utilizando o kw send-patch.

3.2.2 Arquitetura
A arquitetura da solução foi planejada de forma modular. O banco de dados é respon-

sável por armazenar contatos individuais (email_contact), os grupos (email_group) e suas
associações (email_contact_group), enquanto a interface de linha de comando fornece os
comandos necessários para manipulação dessas informações. O modelo de dados contempla

24

3 | CONTRIBUIÇÕES PARA O KW

as entidades contato, grupo e a relação entre elas, garantindo flexibilidade para gerenciar
múltiplos contextos e equipes (Figura 3.1).

Figura 3.1: Diagrama Entidade-Relacionamento do kw manage-contacts

Programa 3.11 modelagem sql kw manage-contacts

-- Table containing the kw email groups infos
CREATE TABLE IF NOT EXISTS "email_group" (

"id" INTEGER NOT NULL UNIQUE,
"name" VARCHAR(50) NOT NULL UNIQUE,
"created_at" TEXT DEFAULT (date('now', 'localtime')),
PRIMARY KEY("id")

);

-- Table containing the kw email contacts infos
CREATE TABLE IF NOT EXISTS "email_contact" (

"id" INTEGER NOT NULL UNIQUE,
"name" VARCHAR(100) NOT NULL,
"email" VARCHAR(100) NOT NULL UNIQUE,
"created_at" TEXT DEFAULT (date('now', 'localtime')),
PRIMARY KEY("id")

);

-- Table containing the association between a kw email group and it's contacts
CREATE TABLE IF NOT EXISTS "email_contact_group" (

"contact_id" INTEGER,
"group_id" INTEGER,
PRIMARY KEY ("contact_id", "group_id"),
FOREIGN KEY ("contact_id") REFERENCES "email_contact"("id") ON DELETE CASCADE,
FOREIGN KEY ("group_id") REFERENCES "email_group"("id") ON DELETE CASCADE

);

CREATE TRIGGER IF NOT EXISTS "delete_contact_if_no_group"
AFTER DELETE ON "email_contact_group"
FOR EACH ROW
WHEN (SELECT COUNT(*) FROM "email_contact_group" WHERE "contact_id" =

OLD.contact_id) = 0↪

BEGIN
DELETE FROM "email_contact" WHERE "id" = OLD.contact_id;

END;

3.2 | KW MANAGE CONTACTS

25

3.2.3 Funcionalidades
A interação com a ferramenta ocorre exclusivamente pelo terminal, de forma a manter

compatibilidade com o fluxo tradicional do kw. Foram definidos comandos claros e diretos,
permitindo que o usuário visualize grupos existentes, adicione novos contatos, associe-os
a diferentes grupos e utilize esses grupos diretamente no envio de e-mails.

As principais funcionalidades implementadas são referenciadas no Programa 3.12.

Programa 3.12 comandos kw manage contacts.

'kw manage-contacts:' \
' manage-contacts (-c | --group-create) [<name>] - create new group' \
' manage-contacts (-r | --group-remove) [<name>] - remove existing group' \
' manage-contacts --group-rename [<old_name>:<new_name>] - rename existent

group' \↪

' manage-contacts --group-add "[<group_name>]:[<contact1_name>]
<[<contact1_email>]>, [<contact2_name>] <[<contact2_email>]>, ..." - add
contact to existent group' \

↪

↪

' manage-contacts --group-remove-email "[<group_name>]:[<contact_name>]" -
remove contact from existent group' \↪

' manage-contacts --group-show=[<group_name>] - show existent groups or
specific group contacts'↪

Criação de Grupos

A funcionalidade de criação de grupos, executada por meio do comando kw manage-
contacts group-create, permite a organização estruturada de contatos para facilitar
as submissões. O comando recebe o nome do novo grupo, que é submetido a algumas de
validações de integridade antes de sua persistência no banco de dados. Essas verificações
asseguram que o identificador proposto seja único, não contenha caracteres especiais e
respeite o limite de 50 caracteres. Uma vez atendidos os requisitos, o sistema realiza a
inserção do registro (Programa 3.13).

Programa 3.13 create_email_group e create_group.

function create_email_group()
{

local group_name="$1"
local values

validate_group_name "$group_name"

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

check_existent_group "$group_name"

if [["$?" -ne 0]]; then
warning 'This group already exists'

cont ⟶

26

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

return 22 # EINVAL
fi

create_group "$group_name"

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

return 0
}

function create_group()
{

local group_name="$1"
local sql_operation_result

values="$(format_values_db 1 "$group_name")"

sql_operation_result=$(insert_into "$DATABASE_TABLE_GROUP" '(name)' "$values" ''
'VERBOSE')↪

ret="$?"

if [["$ret" -eq 2 || "$ret" -eq 61]]; then
complain "$sql_operation_result"
return 22 # EINVAL

elif [["$ret" -ne 0]]; then
complain "($LINENO):" $'Error while inserting group into the database with

command:\n' "${sql_operation_result}"↪

return 22 # EINVAL
fi

return 0
}

Exclusão de Grupos

A funcionalidade de exclusão, invocada pelo comando kw manage-contacts group-
remove, permite a remoção definitiva de uma categoria de contatos e de todas as suas
referências no sistema. A operação exige a validação da existência prévia do grupo no
banco de dados e utiliza a cláusula CASCADE na tabela de associação para garantir a
consistência dos dados (Programa 3.11). Este mecanismo extingue automaticamente todos
os vínculos do grupo, enquanto uma rotina adicional remove contatos que permaneçam
sem qualquer outra associação (Programa 3.14).

Programa 3.14 remove_email_group e remove_group.

function remove_email_group()
{

local group_name="$1"

cont ⟶

3.2 | KW MANAGE CONTACTS

27

⟶ cont

check_existent_group "$group_name"

if [["$?" -eq 0]]; then
warning 'Error, this group does not exist'
return 22 #EINVAL

fi

remove_group "$group_name"

if [["$?" -ne 0]]; then
return 22 #EINVAL

fi

return 0
}

function remove_group()
{

local group_name="$1"
local sql_operation_result

condition_array=(['name']="${group_name}")

sql_operation_result=$(remove_from "$DATABASE_TABLE_GROUP" 'condition_array' '' ''
'VERBOSE')↪

ret="$?"

if [["$ret" -eq 2 || "$ret" -eq 61]]; then
complain "$sql_operation_result"
return 22 # EINVAL

elif [["$ret" -ne 0]]; then
complain $'Error while removing group from the database with

command:\n'"${sql_operation_result}"↪

return 22 # EINVAL
fi

return 0
}

Renomeação de Grupos

A funcionalidade de renomeação, acessada através do comando kw manage-contacts
group-rename, permite a alteração de identificadores existentes sem a necessidade de
excluir e recriar registros. A operação recebe como parâmetros o nome atual e o novo rótulo,
submetendo este último ao mesmo processo de validação do ciclo de criação (limite de
caracteres e ausência de símbolos especiais). Essa revalidação assegura que a consistência
da base de dados seja preservada, mantendo íntegras as associações de contatos vinculadas
ao grupo (Programa 3.15).

28

3 | CONTRIBUIÇÕES PARA O KW

Programa 3.15 rename_email_group e rename_group.

function rename_email_group()
{

local old_name="$1"
local new_name="$2"
local group_id

if [[-z "$old_name"]]; then
complain 'Error, group name is empty'
return 61 # ENODATA

fi

check_existent_group "$old_name"

if [["$?" -eq 0]]; then
warning 'This group does not exist so it can not be renamed'
return 22 # EINVAL

fi

validate_group_name "$new_name"

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

rename_group "$old_name" "$new_name"

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

return 0
}

function rename_group()
{

local old_name="$1"
local new_name="$2"
local sql_operation_result
local ret

condition_array=(['name']="${old_name}")
updates_array=(['name']="${new_name}")

sql_operation_result=$(update_into "$DATABASE_TABLE_GROUP" 'updates_array' ''
'condition_array' 'VERBOSE')↪

ret="$?"

if [["$ret" -eq 2 || "$ret" -eq 61]]; then
complain "$sql_operation_result"
return 22 # EINVAL

elif [["$ret" -ne 0]]; then

cont ⟶

3.2 | KW MANAGE CONTACTS

29

⟶ cont

complain "($LINENO):" $'Error while removing group from the database with
command:\n'"${sql_operation_result}"↪

return 22 # EINVAL
fi

return 0
}

Adicionar contatos à Grupos de Email

A funcionalidade de associação de contatos, executada pelo comando kw group-add-
contact, permite o gerenciamento e a expansão de grupos por meio da inserção em lote. A
operação recebe o nome do grupo alvo e uma lista estruturada no formato NOME <EMAIL>.
O sistema valida a existência do grupo, segmenta a entrada e executa verificações de
integridade sintática em cada endereço de e-mail. Uma vez validados, os contatos são
persistidos e vinculados ao grupo correspondente (Programa 3.16).

Programa 3.16 add_email_contacts e add_contact_group

function add_email_contacts()
{

if [[-z "$contacts_list"]]; then
complain 'The contacts list is empty'
return 61 # ENODATA

fi

if [[-z "$group_name"]]; then
complain 'The group name is empty'
return 61 # ENODATA

fi

check_existent_group "$group_name"
group_id="$?"

if [["$group_id" -eq 0]]; then
complain 'Error, ubable to add contacts to unexistent group'
return 22 # EINVAL

fi

split_contact_infos "$contacts_list" _contacts_array

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

add_contacts _contacts_array

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

cont ⟶

30

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

add_contact_group _contacts_array "$group_id"

if [["$?" -ne 0]]; then
return 22 # EINVAL

fi

return 0
}

function add_contact_group()
{

local -n contacts_array="$1"
local group_id="$2"
local values
local email
local contact_id
local ctt_group_association
local sql_operation_result
local ret

for email in "${!contacts_array[@]}"; do
condition_array=(['email']="${email}")
contact_id="$(select_from "$DATABASE_TABLE_CONTACT" 'id' '' 'condition_array')"
values="$(format_values_db 2 "$contact_id" "$group_id")"

condition_array=(['contact_id']="${contact_id}" ['group_id']="${group_id}")
ctt_group_association="$(select_from "$DATABASE_TABLE_CONTACT_GROUP" 'contact_id,

group_id' '' 'condition_array')"↪

if [[-n "$ctt_group_association"]]; then
continue

fi

sql_operation_result=$(insert_into "$DATABASE_TABLE_CONTACT_GROUP" '(contact_id,
group_id)' "$values" '' 'VERBOSE')↪

ret="$?"

if [["$ret" -eq 2 || "$ret" -eq 61]]; then
complain "$sql_operation_result"
return 22 # EINVAL

elif [["$ret" -ne 0]]; then
complain "($LINENO):" $'Error while trying to insert contact group into the

database with the command:\n'"${sql_operation_result}"↪

return 22 # EINVAL
fi

done

return 0
}

3.2 | KW MANAGE CONTACTS

31

Exibir grupos

A funcionalidade de consulta, operada pelo comando kw manage-contacts group-
show, permite visualizar as informações armazenadas no banco de dados de duas maneiras.
Quando um identificador de grupo é fornecido como parâmetro, o sistema valida sua
existência e lista todos os contatos vinculados (Figura 3.2). Caso o comando seja invocado
sem parâmetros, o sistema apresenta um resumo de todos os grupos cadastrados (Figura 3.3).
A lógica de processamento e formatação da saída de dados detalhada pode ser observada
no Programa 3.17.

Programa 3.17 show email groups, print_groups_infos e print_contacts_infos.

function show_email_groups()
{

local group_name="$1"
local columns="$2"
local groups_info
local contacts_info
local contact_id
declare -a contacts_array
declare -a groups_array

if [[-n "$group_name"]]; then

check_existent_group "$group_name"

if [["$?" -eq 0]]; then
complain 'Error unexistent group'
return 22 #EINVAL

fi

contacts_info="$(get_groups_contacts_infos "$group_name" '*')"
IFS=',' read -ra contacts_array <<< "$contacts_info"
print_contact_infos "$group_name" 'contacts_array' "$columns"
return

fi

groups_info="$(select_from "$DATABASE_TABLE_GROUP")"
readarray -t groups_array <<< "$groups_info"
print_groups_infos 'groups_array' "$columns"

}

function print_contact_infos()
{

local group_name="$1"
local -n _contacts_array="$2"
local columns="$3"
local group_name_width=${#group_name}
local trim_width=$(((columns - group_name_width) / 2))
local remaining_width=$((columns - group_name_width - trim_width))
local id_width=8
local name_width=50

cont ⟶

32

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

local associate_groups_width=20
local created_at_width=12
local email_width=$((columns - id_width - name_width - associate_groups_width -

created_at_width - 8))↪

if [[-z $columns]]; then
columns="$(tput cols)"

fi

printf "%*s%s%*s\n" "$trim_width" "" "$group_name" "$remaining_width" "" | tr ' '
'-'↪

printf "%-${id_width}s|%-${name_width}s|%-${email_width}s|" \
"%-${associate_groups_width}s|%-${created_at_width}s\n" \
"ID" "Name" "Email" "Associated Groups" "Created at"

printf "%-${columns}s\n" | tr ' ' '-'

for contact in "${_contacts_array[@]}"; do
IFS='|' read -r id name email created_at <<< "$contact"
condition_array=(['contact_id']="$id")
associate_groups_num="$(select_from "$DATABASE_TABLE_CONTACT_GROUP" 'COUNT(*)'

'' 'condition_array')"↪

printf "%-${id_width}s|%-${name_width}s|%-${email_width}s|" \
"%-${associate_groups_width}s|%-${created_at_width}s\n" \
"$id" "$name" "$email" "$associate_groups_num" "$created_at"

done
printf "%-${columns}s\n" | tr ' ' '-'

}

function print_groups_infos()
{

local -n groups_info="$1"
local columns="$2"
local id_width=8
local contact_num_width=25
local created_at_width=20
local name_width=$(("$columns" - id_width - contact_num_width - created_at_width -

6))↪

if [[-z $columns]]; then
columns="$(tput cols)"

fi

printf
"%-${id_width}s|%-${name_width}s|%-${contact_num_width}s|%-${created_at_width}s\n"
"ID" "Name" "Contacts" "Created at"

↪

↪

printf "%-${columns}s\n" | tr ' ' '-'

for group in "${!groups_info[@]}"; do

cont ⟶

3.2 | KW MANAGE CONTACTS

33

⟶ cont

IFS='|' read -r id name created_at <<< "${groups_info[$group]}"
condition_array=(['group_id']="$id")
contact_num="$(select_from "$DATABASE_TABLE_CONTACT_GROUP" 'COUNT(*)' ''

'condition_array')"↪

printf
"%-${id_width}s|%-${name_width}s|%-${contact_num_width}s|%-${created_at_width}s\n"
"$id" "$name" "$contact_num" "$created_at"

↪

↪

done

printf "%-${columns}s\n" | tr ' ' '-'
}

Figura 3.2: Exemplo do comando “group_show” para um grupo específico.

Figura 3.3: Exemplo do comando “group_show” sem um grupo especificado.

3.2.4 Enviar patches para grupos
A integração de grupos de e-mail ao fluxo de submissões é viabilizada pelos novos

parâmetros –to-groups e –cc-groups, incorporadas a feature kw send-patch. Essa funcio-
nalidade permite ao usuário enviar patches a grupos de contatos pré-definidos, eliminando
a necessidade de inserção manual de múltiplos endereços, principalmente em submissões
recorrentes.

Para que isso seja possível, o send-patch recebe o nome dos grupos em listas contendo
identificadores de grupos separados por vírgulas. Internamente, o sistema processa essa
entrada realizando consultas ao banco de dados para realizar a consulta dos nomes de
grupos e encontrar os endereços de e-mail válidos, que são então injetados nos campos
de destinatário (To) ou de cópia (Cc) da mensagem (Programa 3.18). Os novos parâmetros
podem ser encontrados em: Programas 3.19.

Programa 3.18 Função send_patch_main com métodos –to-groups e cc-groups.

function send_patch_main()
{

local flag
flag=${flag:-'SILENT'}
if [["$1" =~ -h|--help]]; then

cont ⟶

34

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

send_patch_help "$1"
@@ -89,7 +90,9 @@

local flag="$1"
local opts="${send_patch_config[send_opts]}"
local to_recipients="${options_values['TO']}"
local to_groups_recipients="${options_values['TO_GROUPS']}"
local cc_recipients="${options_values['CC']}"
local cc_groups_recipients="${options_values['CC_GROUPS']}"
local dryrun="${options_values['SIMULATE']}"
local commit_range="${options_values['COMMIT_RANGE']}"
local version="${options_values['PATCH_VERSION']}"
local extra_opts="${options_values['PASS_OPTION_TO_SEND_EMAIL']}"
local private="${options_values['PRIVATE']}"
local rfc="${options_values['RFC']}"
local kernel_root
local patch_count=0
local cmd='git send-email'
flag=${flag:-'SILENT'}

[[-n "$dryrun"]] && cmd+=" $dryrun"

if [[-n "$to_groups_recipients"]]; then
validate_email_group_list "$to_groups_recipients" || exit_msg 'Please review

your `--to-groups` list.'↪

if [[-n "$to_recipients"]]; then
to_recipients+=','

fi
to_recipients+=$(get_groups_contacts_infos "$to_groups_recipients" 'email')

fi

if [[-n "$cc_groups_recipients"]]; then
validate_email_group_list "$cc_groups_recipients" || exit_msg 'Please review

your `--cc-groups` list.'↪

if [[-n "$cc_recipients"]]; then
cc_recipients+=','

fi
cc_recipients+=$(get_groups_contacts_infos "$cc_groups_recipients" 'email')

fi

if [[-n "$to_recipients"]]; then
validate_email_list "$to_recipients" || exit_msg 'Please review your `--to`

list.'↪

cmd+=" --to=\"$to_recipients\""
fi
if [[-n "$cc_recipients"]]; then
validate_email_list "$cc_recipients" || exit_msg 'Please review your `--cc`

list.'↪

cmd+=" --cc=\"$cc_recipients\""
fi
Don't generate a cover letter when sending only one patch
patch_count="$(pre_generate_patches "$commit_range" "$version")"
if [["$patch_count" -eq 1]]; then

cont ⟶

3.3 | KW PATCH TRACK

35

⟶ cont

opts="$(sed 's/--cover-letter//g' <<< "$opts")"
fi
kernel_root="$(find_kernel_root "$PWD")"
if inside a kernel repo use get_maintainer to populate recipients
if [[-z "$private" && -n "$kernel_root"]]; then

generate_kernel_recipients "$kernel_root"
cmd+=" --to-cmd='bash ${KW_PLUGINS_DIR}/kw_mail/to_cc_cmd.sh ${KW_CACHE_DIR}

to'"↪

cmd+=" --cc-cmd='bash ${KW_PLUGINS_DIR}/kw_mail/to_cc_cmd.sh ${KW_CACHE_DIR}
cc'"↪

fi
@@ -931,27 +950,27 @@

[["$1" =~ ^--$]] && dash_dash=1
The added quotes ensure arguments are correctly separated
options="$options \"$1\""
shift

done
if [[-n "$commit_count"]]; then
add `--` if not present
[["$dash_dash" == 0]] && options="$options --"
options="$options $commit_count"

fi
printf '%s' "$options"

}

Programa 3.19 opções do comando –send do kw send-patch contendo o to-groups e o
cc-groups.

| *kw send-patch* (-s | \--send) [\--simulate] [\--private] [\--rfc]
[\--to='<recipient>,...'] [\--cc='<recipient>,...']
[\--to-groups='<recipient>,...'] [\--cc-groups='<recipient>,...']
[<rev-range>...] [-v<version>] [\-- <extra-args>...]

3.2.5 Resultados
Entre os benefícios da abordagem adotada estão a maior praticidade no gerenciamento

de destinatários, a redução de erros manuais na inclusão de e-mails e a possibilidade de
reutilização de grupos em diferentes contextos. Isso se traduz em um processo mais ágil
e confiável no envio de patches.

Apesar dos avanços alcançados, algumas limitações ainda podem ser apontadas. A
ferramenta oferece suporte apenas via CLI, não possuindo interface para o usuário via
terminal, que poderia ser desejável, principalmente, para visualizar informações dos grupos
e contatos de uma maneira mais organizada.

3.3 KW Patch track
Atualmente, embora seja possível submeter patches através do kw, ainda não existe

um mecanismo eficaz para acompanhar e gerenciar o ciclo de vida dessas submissões.

36

3 | CONTRIBUIÇÕES PARA O KW

Conforme novas versões de um mesmo patch são enviadas e as revisões se acumulam,
torna-se cada vez mais difícil manter o controle sobre o histórico, as respostas recebidas e
o estado atual de cada alteração. Esta lacuna é significativa, pois obriga o desenvolvedor
a realizar esse acompanhamento de forma externa e manual, o que fragmenta o fluxo
de trabalho e aumenta a carga cognitiva. Diante dessa limitação, surgiu a necessidade
de uma funcionalidade capaz de registrar, rastrear e atualizar automaticamente o status
dos patches submetidos, centralizando o gerenciamento do ciclo de vida diretamente no
ecossistema do kw.

Um vídeo demonstrativo dessa ferramenta pode ser encontrado em: https://jgbsouza.
github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm

3.3.1 Objetivos
Assim, o objetivo principal do Patch Track é permitir que o usuário acompanhe de forma

automatizada o progresso de suas contribuições, desde o envio inicial até a integração no
repositório, reduzindo o esforço manual e promovendo maior clareza sobre o processo
de revisão.

Além disso, o sistema busca oferecer uma base sólida para extensões futuras, como
integração com repositórios oficiais e coleta de métricas sobre o fluxo de contribuição,
incluindo tempo médio de resposta, aprovação e integração de patches. Essa capacidade
de extração de dados é fundamental para consolidar o kw como uma ferramenta de
suporte à pesquisa científica, permitindo o estudo empírico e sistemático do modelo de
desenvolvimento do kernel Linux e o entendimento aprofundado de suas dinâmicas de
colaboração em larga escala.

3.3.2 Arquitetura
A arquitetura do Patch Track foi projetada de forma modular e baseada em um modelo

relacional de entidades interligadas. Todas as informações são armazenadas em banco de
dados, garantindo rastreabilidade e consistência das submissões.

A entidade central, patch, armazena informações como o autor, o message-id da sub-
missão, a versão e o status atual do patch. O campo outdated indica quando uma versão
mais recente substitui outra, preservando o histórico completo das alterações.

A entidade contribution agrupa logicamente diferentes versões de um mesmo trabalho,
mantendo informações sobre a data da última interação e o repositório de destino. Esse
repositório é representado pela entidade repository, que contém dados como nome, URL e
branch associada na qual a contribuição deve ser integrada assim que aprovada, além dos
mantenedores vinculados à esse repositório, permitindo identificar revisores e correlacionar
respostas relevantes nas threads de e-mail.

O rastreamento dos envios é realizado pela tabela patch_submission, que registra o
identificador da mensagem, o remetente e o vínculo entre cada envio e o patch correspon-
dente. O sistema também oferece suporte a tags, utilizadas como marcadores semânticos
para facilitar a filtragem, a categorização e a exibição das informações.

https://jgbsouza.github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm
https://jgbsouza.github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm

3.3 | KW PATCH TRACK

37

Essa estrutura de dados estabelece uma base robusta para o controle do ciclo de vida
dos patches e possibilita futuras expansões, como integração com serviços externos de
revisão e automação de métricas analíticas (Figura 3.4).

Figura 3.4: Diagrama Entidade-Relacionamento do Kw patch_track

3.3.3 Funcionalidades
O kw patch_track oferece um conjunto de funcionalidades voltadas à automatização e ao

gerenciamento das submissões de patches. Todas as interações ocorrem de forma integrada
ao fluxo do kw, mantendo a compatibilidade com a ferramenta principal de envio.

As principais funcionalidades implementadas são referenciadas no Programa 3.20.

Programa 3.20 comandos kw patch-track.

'kw patch-track:' \
' patch-track (--show-patches) [[--from <YYYY-MM-DD>] | [--after <YYYY-MM-DD>]

[--before <YYYY-MM-DD>]] - Show patches dashboard in chronological order ' \↪

' patch-track (-d | --show-contributions) - Show all contributions ' \
' patch-track (--id <num>) [-s <status> | --set-status <status>] - Set a patch

status ' \↪

' patch-track (-u | --update) - Update patch statuses using heuristics ' \
' patch-track (-c | --contribution-id <id>) (--set-repository <name:url>) -

Associate a repository to a contribution ' \↪

cont ⟶

38

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

' patch-track (-r | --repository-id <id>) (-m | --set-maintainer <name:email>) -
Associate a maintainer to a repository ' \↪

' patch-track (-c | --contribution-id <id>) (-o | --open-contribution) - Open
contribution email thread in mutt '↪

Registro e Rastreamento das submissões e contribuições

Durante a submissão dos patches com a ferramenta kw send_patch, o sistema permite
identificar ou criar uma contribuição por meio do terminal interativo, que lista as contri-
buições ativas do usuário para reutilização ou criação de uma nova (Figura 3.5). Após a
submissão, cada patch enviado é cadastrado no banco de dados com informações como
versão, título, autor, data de criação e commit_hash.

Quando um patch corresponde a uma versão já existente — isto é, quando título,
autor, commit_hash e contribuição coincidem — apenas a nova submissão é registrada,
evitando duplicação de versões. Em seguida, é criada uma nova submission, agregando
todas as submissões individuais feitas naquela execução do kw send-patch e vinculando-as
à contribuição correspondente.

Figura 3.5: Identificando a contribuição Kw patch_track

Para extrair e salvar as informações dos patches submetidos, a ferramenta se utiliza da
técnica de raspagem de dados de dois tipos de arquivos gerados durante a etapa de envio. O
primeiro desses arquivos (Figura 3.6), gerado temporariamente para esse fluxo, é resultado
do redirecionamento da saída do comando git send-email, utilizado pelo send-patch para
publicação dos patches. Desse arquivo então o kw patch-track extrai grande parte das
informações, como o título, email do autor do commit/patch, email do remetente (pode não
ser o mesmo usado para criar os commits), os emails dos destinatários, data e horário de
submissão e por fim o message-id. Adicionalmente, para ter acesso aos hashes dos commits,
avalia-se também os arquivos de patches (Figura 3.7) preliminares, gerados pelo kw send-

patch para pré-processamento interno. Ainda que parte dos dados extraidos do resultado
da submissão estejam disponíveis também no arquivo do patch, o fato de que parte das
informações como títulos, autor e destinatários podem ser reescrita durante a submissão
somado ao fato de que esses arquivos contém textos adicionais com o conteúdo do patch,
poderiam levar a erros de julgamento ou informações imprecisas na hora da extração.

Integração com o mutt

O kw patch_track oferece integração com o cliente de e-mail em terminal mutt,1 um
cliente amplamente utilizado pela capacidade de exibir emails diretamente no terminal. O
objetivo dessa integração é permitir que o usuário visualize, de forma prática, os e-mails

1 https://mutt.org

https://mutt.org

3.3 | KW PATCH TRACK

39

Figura 3.6: Resultado do comando send_patch

Figura 3.7: Arquivo de um patch com alterações propostas

relacionados às submissões de patches e até mesmo os responda através do comando
kw patch_track open-contribution <contribution-id> (Figura 3.8), ao mesmo tempo em
que o sistema utiliza o mutt como ferramenta auxiliar para automatizar a análise das
mensagens e headers de emails para identificar informações relevantes para o fluxo de
atualização de status.

Para viabilizar essa funcionalidade, os pacotes mutt, xvfb e xterm foram adicionados
às dependências do projeto. Essas ferramentas são instaladas automaticamente durante a

40

3 | CONTRIBUIÇÕES PARA O KW

instalação do kworkflow ao executar o arquivo de setup: ./setup.sh -i.2

Figura 3.8: Abrindo uma contribuição no mutt

Além das dependências, um arquivo de configuração padrão do mutt é criado durante
a instalação, contendo os parâmetros necessários para autenticação e leitura de e-mails via
IMAP. O template atual foi configurado para uso com contas do Gmail e define opções como
o servidor IMAP, a mailbox padrão e o tipo de armazenamento. Entre as configurações
incluídas estão:

Programa 3.21 arquivo de configurações mutt.

Mutt options to be used with patch-track
imap_user=
imap_pass=

folder="imaps://imap.gmail.com"
spoolfile="+[Gmail]/Todos os e-mails"
record="+[Gmail]/Sent Mail"
mbox_type="Maildir"

Além dessas configurações, durante a primeira execução do kw patch_track, o usuário
fornecerá de maneira interativa o seu imap_user e imap_pass (Figura 3.9), respectivamente
o seu email e a senha de aplicativo gerada para a sua conta do Gmail. Com todas essas
configurações definidas, o kw patch-track consegue que o mutt abra diretamente a mailbox
“Todos os e-mails” do Gmail, possibilitando que o usuário visualize suas mensagens pelo
terminal. Paralelamente, o kw patch_track utiliza o mutt de forma programática para
listar mensagens, extrair headers e identificar respostas, novas versões e outros elementos
essenciais para o rastreamento automático dos patches — sem exigir interação do usuário
para essas operações.

2 Esse processo segue o procedimento documentado na página oficial de instalação do kworkflow https:
//kworkflow.org/content/installanduninstall.html

https://kworkflow.org/content/installanduninstall.html
https://kworkflow.org/content/installanduninstall.html

3.3 | KW PATCH TRACK

41

Figura 3.9: Configurando imap_user e imap_pass para o mutt

Definição de Repositório

Após selecionar ou criar uma contribuição durante o processo de envio pelo kw

send_patch, o usuário pode definir o repositório associado àquela contribuição atra-
vés do comando kw patch-track –set-repository <repository_name:repository_origin_url>

–contribution <contribution_id> (Figura 3.10).

O repositório definido é armazenado na contribuição e, além de melhorar o contexto do
registro das submissões, permite que em futuras implementações esse dado seja utilizado
pelo sistema para determinar o destino previsto para integração dos patches e se essa
integração já foi realizada. Essa informação também auxilia na recuperação de contexto
para futuras submissões vinculadas à mesma contribuição, garantindo consistência no
fluxo de trabalho.

Definição de Mantenedor

Após a definição do repositório ligado à contribuição, o sistema oferece ao usuário a
possibilidade de indicar um mantenedor responsável por aquele repositório através do co-
mando kw patch-track –set-maintainer <maintainer_name:maintainer_email> (Figura 3.11).

A associação entre repositório e mantenedor facilita a identificação de revisores po-
tenciais, bem como a correlação de mensagens relevantes nas threads de e-mail. Embora
não interfira diretamente no processo de submissão, essa informação contribui para uma
melhor organização e para o acompanhamento do fluxo de revisão, garantindo maior
rastreabilidade no ciclo de vida das contribuições. Futuramente, essa informação pode ser
utilizada para melhor determinar e-mails que identifiquem a aprovação de uma submissão
antes de sua integração final.

Atualização Automática de Status

O sistema implementa uma lógica de atualização automática dos status das contribui-
ções através do comando kw patch-track update-contribution <contribution_id>, baseada
em heurísticas inspiradas no fluxo de revisão do kernel Linux (Programa 3.22). Durante
essa etapa, o comando atualiza o status dos patches indivudalmente (Programa 3.23) e,
por fim, o estado final da contribuição (Programa 3.24):

42

3 | CONTRIBUIÇÕES PARA O KW

Figura 3.10: Identificando o repositório de uma contribuição

Os estados possíveis para um patch incluem:

• Submetido/Em revisão: atribuído a patches recém-enviados;

• Revisado: mantido enquanto há respostas na thread sem substituições;

• Aprovado: definido ao detectar respostas contendo marcadores como Reviewed-by

ou Approved;

• Mergeado: atribuído quando a contribuição correspondente é identificada no repo-
sitório de destino.

Os estados possíveis para uma contribuição incluem:

• Submetido / Em revisão: representa o estado inicial ou ativo, aplicado quando
o conjunto de patches ainda não foi totalmente aprovado ou integrado, e não há
sinalização específica de revisão pendente para patches individuais.

• Revisado: indica que o fluxo de feedback foi iniciado, sendo atribuído sempre que
ao menos um patch da contribuição for movido para o estado de revisão.

• Aprovado: definido caso um email de aprovação tenha sido encontrado e nenhum
patch esteja no estado de revisão.

• Mergeado: definido caso a totalidade dos patches tenha sido integrada com sucesso

3.3 | KW PATCH TRACK

43

Figura 3.11: Identificando o mantenedor de um repositório

ao repositório de destino.

Embora o sistema contemple o estado Mergeado, a detecção automática desse evento
ainda não foi implementada. Inicialmente foi investigada a possibilidade de localizar, no
repositório, o hash do commit gerado a partir do patch submetido. Contudo, no modelo de
contribuição do kernel Linux, o commit final costuma ser modificado pelos mantenedores
— o hash muda devido a alterações no message, ajustes manuais, aplicação com –signoff,
rebase ou integração via mecanismos internos de manutenção. Como consequência, não é
possível inferir de forma confiável a correspondência direta entre um patch enviado por
e-mail e o commit final integrado ao repositório, inviabilizando uma heurística simples
para essa etapa. Além disso, a implementação atual também não realiza distinções entre os
remetentes dos e-mails que identifiquem o estado de aprovação de um patch, permitindo
com que tanto mantenedores quanto não mantenedores sejam considerados nesse processo.

Programa 3.22 Código update_contribution_status

function update_contribution_status()
{

condition_array=(['id']="$contribution_id")
contribution_repository_id="$(get_contribution_info 'repository_id'

'condition_array')"↪

cont ⟶

44

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

condition_array=(['id']="$contribution_repository_id")
repository_origin_url="$(get_repository_info 'origin_url' 'condition_array')"

submission_id="$(get_last_submission_infos_by_contribution_id 'id'
"$contribution_id")" || return 22↪

condition_array=(['submission_id']="$submission_id")

patch_submission_infos="$(
get_patch_submission_info 'patch_id, submission_id, message_id'

'condition_array'↪

)" || return 22

for patch_id in $patch_submission_infos; do
IFS='|' read -r patch_id submission_id message_id <<< "$patch_submission_infos"

condition_array=(['patch_id']="$patch_id"
['submission_id']="$submission_id"
['message_id']="$message_id")

message_id="$(get_patch_submission_info 'message_id' 'condition_array')" ||
continue↪

condition_array=(['id']="$patch_id")
patch_infos="$(get_patch_info 'commit_hash, status' 'condition_array')" ||

continue↪

IFS='|' read -r commit_hash status <<< "$patch_infos"

final_status="$(
update_patch_status \

"$patch_id" \
"$message_id" \
"$commit_hash" \
"$status"

)"
patches_status["$patch_id"]="$final_status"

done

decide_contribution_status "$contribution_id" 'patches_status'
show_contributions_dashboard '' '' "$contribution_id"

}

Programa 3.23 Código update_patch_status

function update_patch_status()
{

if [["$patch_current_status" == 'MERGED']]; then
printf '%s' 'MERGED'
return 0

fi

cont ⟶

3.3 | KW PATCH TRACK

45

⟶ cont

[[-f '/tmp/mutt-status']] && rm -f '/tmp/mutt-status'

xterm -iconic -e \
sh -c "mutt -F ${MUTT_RC_PATH} \

-e 'push \"l ((~i ${patch_message_id})|(~x ${patch_message_id})) ~b .*
<enter><pause><enter>q\"' \↪

; echo finished > /tmp/mutt-status" \
> /dev/null 2>&1 &

while [[! -s '/tmp/mutt-status']]; do
sleep 0.1

done

mapfile -t reply_files < <(grep -R -l "In-Reply-To:.*${patch_message_id}"
"$KW_MUTT_MESSAGES_DIR")↪

if [["${#reply_files[@]}" -eq 0]]; then
set_patch_status "$patch_id" 'SENT'
printf '%s' 'SENT'
return 0

fi

for file in "${reply_files[@]}"; do
if grep -Eiw "Approved|Reviewed-by" "$file" > /dev/null 2>&1; then

set_patch_status "$patch_id" 'APPROVED'
printf '%s' 'APPROVED'
return 0

fi
done

last_msg_file=$(printf '%s\n' "${reply_files[@]}" |
xargs -d '\n' stat --format='%Y %n' 2> /dev/null |
sort -n |
tail -n1 |
cut -d' ' -f2-)

if [[-z "$last_msg_file"]]; then
set_patch_status "$patch_id" 'SENT'
printf '%s' 'SENT'
return 0

fi

last_author=$(grep -i '^From:' "$last_msg_file" |
sed -E 's/From:.*<([^>]+)>.*/\1/')

if [["$last_author" == "${patch_track_mutt_config['imap_user']}"]]; then
set_patch_status "$patch_id" 'SENT'
printf '%s' 'SENT'

else
set_patch_status "$patch_id" 'REVIEWED'
printf '%s' 'REVIEWED'

fi

cont ⟶

46

3 | CONTRIBUIÇÕES PARA O KW

⟶ cont

return 0
}

Programa 3.24 Código decide_contribution_status

function decide_contribution_status()
{

local contribution_id="$1"
local -n _contribution_patches_status="$2"
local has_revisado=0
local has_aprovado=0
local has_mergeado=0
local has_sent=0

for pid in "${!_contribution_patches_status[@]}"; do
case "${_contribution_patches_status[$pid]}" in
REVIEWED) has_revisado=1 ;;
APPROVED) has_aprovado=1 ;;
MERGED) has_mergeado=1 ;;
SENT) has_sent=1 ;;

esac
done

if [[$has_revisado -eq 1]]; then
contribution_status="REVIEWED"

elif [[$has_aprovado -eq 1]]; then
contribution_status="APPROVED"

elif [[$has_sent -eq 1]]; then
contribution_status="SENT"

elif [[$has_mergeado -eq 1]]
contribution_status="MERGED"

fi

condition_array=(['id']="$contribution_id")
set_contribution_status "$contribution_id" "$contribution_status"

return 0
}

Atualização Manual de Status

Além da atualização automática baseada em heurísticas, é desejável oferecer ao usuário
a possibilidade de ajustar manualmente o status de um patch. Essa funcionalidade per-
mitiria corrigir interpretações equivocadas da heurística, lidar com casos excepcionais e
manter controle total sobre o histórico de evolução de cada contribuição. Uma interface
de atualização manual complementaria a lógica automática sem substituí-la, fornecendo
maior flexibilidade operacional (Figura 3.12).

3.3 | KW PATCH TRACK

47

Figura 3.12: Atualização manual do status de um patch via Kw patch-track

3.3.4 Próximos Passos
Atualmente, o patch-track encontra-se estruturado com um objetivo claro e funcionali-

dades essenciais de rastreamento. No entanto, para evoluir para uma versão de uso pleno,
é fundamental expandir a liberdade de edição e a flexibilidade da ferramenta, permitindo
que o usuário gerencie o ciclo de vida das informações de forma mais autônoma. Entre
os pontos de desenvolvimento futuros, destacam-se:

Flexibilidade na Gestão de Dados e Experiência do Usuário

Permitir mais flexibilidade do usuário para editar dados registrados, como, por exemplo:

• Renomeação de Contribuições: Implementar a capacidade de renomear contribui-
ções existentes. Como o nome da contribuição possui valor apenas para a organização
pessoal do desenvolvedor, essa funcionalidade permitiria correções após a criação
sem impactar a lógica técnica do sistema.

• Realocação de Submissões: Permitir que o usuário mova submissões de uma
contribuição para outra. Esta melhoria de experiência do usuário (UX) é vital para
corrigir erros de identificação ocorridos durante o envio de patches via kw send-
patch, garantindo que o histórico de evolução reflita o agrupamento pretendido.

48

3 | CONTRIBUIÇÕES PARA O KW

• Gestão de Mantenedores e Repositórios: Expandir as capacidades de edição e
exclusão para as entidades de mantenedores e repositórios. Isso inclui a alteração de
metadados (como e-mails e URLs) e a remoção de registros obsoletos ou duplicados,
mantendo a base de dados limpa e atualizada conforme a rotatividade orgânica dos
subsistemas do kernel.

• Edição de Metadados de Contribuição: Oferecer uma interface para ajustar infor-
mações vinculadas à contribuição após sua criação, como a mudança do repositório
de destino ou do mantenedor associado, conferindo maior resiliência a mudanças de
contexto no fluxo de trabalho.

Automatização do Rastreio de Integração (Merge)

Implementar mecanismos para localizar automaticamente o ponto de integração de-
finitiva de um patch no histórico de ramos (branches) do repositório. Como o ciclo de
vida de uma contribuição no kernel é concluído apenas com o merge em árvores estáveis
ou de subsistemas, essa funcionalidade permitiria que o patch-track fechasse o ciclo de
monitoramento de forma autônoma, informando ao usuário precisamente em qual versão
do código sua contribuição foi incorporada.

Aprimoramento da Corretude das Heurísticas de Aprovação

Evoluir a lógica de análise de mensagens para aumentar a confiabilidade na transição de
estados. Atualmente baseada em buscas por padrões textuais, a heurística deve ser refinada
para validar se o autor de uma mensagem de aprovação (como Acked-by ou Reviewed-

by) corresponde ao mantenedor previamente associado ao repositório. Adicionalmente,
prevê-se a integração do kw com plataformas de revisão e bancos de dados de listas
de discussão (como o lore.kernel.org ou instâncias do Patchwork), permitindo o uso de
metadados estruturados e marcadores específicos que garantam um julgamento de status
imune a falso-positivos de conversas casuais nas threads de e-mail.

Segmentação de Contexto via Mailboxes Específicas:

Implementar o suporte à organização de mensagens em caixas de correio (mailboxes)
dedicadas exclusivamente aos fluxos de cada contribuição ou projeto. Atualmente, a inte-
gração com o mutt pode exigir a varredura de caixas de entrada genéricas com volumes
massivos de dados, típicos de listas de discussão do kernel. Ao viabilizar o isolamento das
comunicações em pastas específicas, o patch-track permitiria que o mutt operasse com um
contexto de dados reduzido, otimizando significativamente a performance de indexação
e a agilidade da interface. Além disso, essa delimitação de escopo aumentaria a eficiên-
cia das heurísticas de análise automática, que passariam a processar apenas mensagens
previamente filtradas e relevantes ao histórico do usuário.

3.3.5 Resultados
Com a introdução do kw patch track, o processo de contribuição via kw deve tornar-se

mais organizado e automatizado. A ferramenta deve permitir acompanhar o ciclo de vida de
cada patch de forma centralizada, eliminando a necessidade de acompanhamento manual

3.3 | KW PATCH TRACK

49

e reduzindo o risco de perda de informações, apresentando maior clareza e rastreabilidade
no fluxo de revisões, economia de tempo no acompanhamento de submissões, histórico
completo e versionado de cada contribuição, uma base estruturada para análise estatística
e integração futura com outras ferramentas, além de um ambiente mais unificado para
colaboração no kernel, reduzindo dependências de outras ferramentas, como softwares
gerenciadores de email.

51

Capítulo 4

Considerações Finais

Esse trabalho apresentou de forma geral, uma análise sobre o kernel Linux, explorando a
sua importância e relevância no cenário, suas etapas de desenvolvimento, denominadas por
Feitelson (Feitelson, 2012) como modelo de desenvolvimento perpétuo até o lançamento
de suas versões para o usuário final, os stable kernels. Nesse processo, também foi discutido a
relevância do seu desenvolvimento como software livre, o que influencia significativamente
a sua segmentação em diversos componentes e o seu modelo de contribuição para permitir
a colaboração de uma comunidade de desenvolvedores em sua implementação. Ainda
nessa análise, evidencia-se também a complexidade que o sistema adquiriu ao longo dos
anos, exigindo uma grande carga de conhecimento técnico e prático antes que possam
de fato desenvolver para o sistema.

Nesse contexto, diversas ferramentas surgem de forma a mitigar as dificuldades as-
sociadas à esse fluxo de contribuição. Dentre essas ferramentas, o Kworkflow se destaca
pela busca em oferecer uma interface única e integrada para todas essas dificuldades.
Para isso, o kw é construído como um hub modular, integrando funcionalidades locais e
externas, oferecendo suporte tanto a tarefas práticas — como a compilação e o deploy de
versões do kernel — quanto a processos indiretos, como a submissão de patches, através
de comandos de terminal.

Entretanto, compreender e automatizar integralmente o ciclo de contribuição ainda
constitui um desafio que o kw busca superar. Dentre as dificuldades ainda não mapeadas,
uma das etapas mais críticas é o gerenciamento de patches após a submissão, período em
que as contribuições passam por revisões e discussões por parte dos mantenedores e da
comunidade de desenvolvedores. Dada a insuficiência das ferramentas de gerenciamento
de versão em suprir as necessidades de um software com as dimensões do kernel Linux,
hoje, as contribuições para a ferramenta são submetidas através de listas de email, o que
representam dificuldades ainda mais significativas para este processo, como a dependência
de ferramentas externas não gerenciáveis, a baixa rastreabilidade e controle das submissões,
escalabilidade limitada, além de representar uma ruptura no fluxo de desenvolvimento,
que o kw pretende englobar.

Este trabalho dá continuidade ao desenvolvimento do Kworkflow, integrando-se à
linha de evolução de projetos anteriores, como Simplificando o processo de contribuição

52

4 | CONSIDERAÇÕES FINAIS

para o kernel Linux (Neto, 2022) e Integrating the Kworkflow system with the Lore archives

(Barros Tadokoro, 2023). Esses trabalhos estabeleceram as bases estruturais do sistema,
consolidando o uso de um banco de dados interno, a automatização do envio de patches por
e-mail e a integração com os arquivos de discussão oficiais do kernel, sobre as quais o pre-
sente estudo se apoia. Ao compreender a etapa de revisão dos patches, esse trabalho integra
de forma completa o processo de gestão de contribuições, permitindo análises holísticas do
processo, alinhando-se para permitir o caráter de software científico almejado pelo kw.

A primeira contribuição foca na melhoria do sistema de CRUD do banco de dados.
Apesar do Kworkflow já contar com funções que permitiam interação com o SQLite3,
essas funções não isolavam suficientemente o código das instruções de acesso aos dados,
exigindo inserção de trechos SQL (por exemplo, uso de cláusulas WHERE) diretamente
nos comandos de seleção. Para corrigir isso, os comandos de leitura foram parametrizados
para aceitar as buscas com o parâmetro de especificação WHERE, ordenação dos resultados
com o uso do parâmetro ORDER BY e limite de itens na resposta com o parâmetro LIMIT,
além da refatoração para permitir que tanto o processo de remoção aceitasse comparações
além da igualdade (>, <, >=, <=, !=) e combinações de critérios mais complexas. Além
disso, foi incorporado também o método update_into para permitir alterações pontuais
de atributos em uma entidade. Essas mudanças melhoraram o fluxo de interação com o
banco de dados, viabilizando implementações subsequentes para esse trabalho, como o kw

manage contacts e o kw patch track, que dependem de buscas parametrizáveis, ordenação
e limites para operar corretamente.

A segunda contribuição, o kw manage-contacts, é uma ferramenta de suporte, per-
mitindo a coordenação de grupos e contatos de contribuidores. Ainda que a ferramenta
já possuísse suporte para envio das submissões para mantenedores responsáveis, isso
não atende alguns grupos não oficiais, como, por exemplo, colegas de trabalho ou outros
grupos externos envolvidos com o patch. Como solução, a ferramenta kw manage_contacts

foi desenvolvida, utilizando-se do sistema de banco de dados para armazenar os dados
dos contatos e grupos criados pelo usuário bem como das suas relações, denominando
de quais grupos cada contato faz parte. Essa ferramenta também se integra diretamente
com o sistema de submissões de patches, kw manage-contacts, permitindo, através dos
comandos to-groups e cc-groups, que grupos sejam passados como parâmetro de submissão,
garantindo uma submissão muito mais simples e coesa através do terminal de comandos,
garantindo corretude nas submissões ao evitar que os contatos precisem ser digitados
um a um de forma manual.

Com foco mais específico no problema das listas de e-mail como principal método de
contribuição para o kernel Linux, a terceira implementação deste trabalho, o kw patch-
track, funciona como uma camada de gerenciamento local das submissões do usuário. O
módulo foi projetado para operar de forma integrada ao fluxo de envio do kw send-patch,
registrando as submissões e utilizando técnicas de raspagem de dados (data scraping) nos
arquivos temporários gerados durante o processo para extrair metadados e persisti-los
no banco de dados.

Ainda em estágio de refinamento de heurísticas, a ferramenta oferece um sistema de
atualização automática de estados através do comando kw patch-track –update. Este
comando processa as mensagens recebidas para identificar o estágio atual de cada patch,

4 | CONSIDERAÇÕES FINAIS

53

embora a corretude total dessas transições dependa da evolução dos algoritmos de análise
textual. Complementarmente, a integração com o mutt via comando kw patch-track
–open-contribution viabiliza uma interface terminal para que o usuário visualize e
responda a revisões de forma contextualizada. Esta arquitetura visa mitigar a dependência
de ferramentas externas e manuais no acompanhamento de contribuições, fornecendo
uma base sólida para a extração de dados estruturados, ainda que o escopo atual do projeto
preveja futuras expansões para suportar maior granularidade no histórico de interações
e na precisão dos julgamentos automáticos.

A introdução dessas ferramentas ao Kworkflow traz impactos significativos tanto
para contribuidores experientes quanto para novos participantes do desenvolvimento
do kernel Linux. Ao centralizar operações que antes dependiam de múltiplos proces-
sos externos — como consultas manuais de listas de e-mail, organização de grupos de
contatos e acompanhamento de revisões de patches — o sistema reduz o overhead de
contribuintes recém-chegados, simplificando a configuração inicial e a compreensão do
fluxo de submissão. O kw manage-contacts garante que grupos de destinatários recorrentes
possam ser aplicados automaticamente, evitando erros manuais e agilizando a comunicação,
enquanto o kw patch-track oferece rastreabilidade completa das contribuições, permitindo
que o usuário visualize o histórico de submissões, respostas e revisões sem recorrer a
ferramentas externas.

De forma geral, essas implementações ajudam a consolidar a proposta do Kworkflow
de oferecer uma solução unificada e integrada para o ciclo de contribuição ao kernel
Linux, promovendo maior previsibilidade, consistência e eficiência. Ao reduzir tarefas
repetitivas e centralizar informações críticas, as ferramentas aumentam a produtividade,
diminuem a curva de aprendizado e fornecem uma base sólida para automações e análises
futuras. Dessa maneira, o trabalho não apenas melhora a experiência do desenvolvedor
individual, mas também fortalece o ecossistema colaborativo do kernel, evidenciando
a importância de soluções que conectem de forma coerente os diversos elementos do
processo de desenvolvimento em um fluxo contínuo e gerenciável.

55

Referências

[Avatavului et al. 2023] Cristian Avatavului et al. “Open-source and closed-source
projects: a fair comparison”. Journal of Information Systems & Operations Manage-

ment 17.2 (dez. de 2023) (citado na pg. 5).

[Barros Tadokoro 2023] David de Barros Tadokoro. Integrating the kworkflow sys-

tem with the lore archives: enhancing the linux kernel developer interaction with

mailing lists. Monografia Final. Institute of Mathematics and Statistics, Bachelor of
Computer Science. Supervisor: Paulo Meirelles. Co-supervisor: Rodrigo Siqueira.
2023 (citado nas pgs. 3, 13, 17, 52).

[Devineni 2020] Siva Karthik Devineni. “Version control systems (vcs) the pillars of
modern software development: analyzing the past, present, and anticipating future
trends”. International Journal of Science and Research 9.12 (2020), pp. 1816–1829.
doi: 10.21275/SR24127210817 (citado na pg. 15).

[Feitelson 2012] Dror G. Feitelson. “Perpetual development: a model of the linux
kernel life cycle”. Journal of Systems and Software 85.4 (2012), pp. 859–875. url:
https://www.cs.huji.ac.il/~feit/papers/LinuxDev12JSS.pdf (citado nas pgs. 2, 7,
51).

[Foundation 2023] Free Software Foundation. A Definição de Software Livre. Acesso
em: 22 dez. 2025. 2023. url: https://www.gnu.org/philosophy/free-sw.pt-br.html
(citado na pg. 5).

[Greg Kroah Hartman 2016] Greg Kroah Hartman. Kernel Recipes 2016 - Patches

carved into stone tablets. . . - Greg KH. Acessado em: 03 set. 2025. 2016. url: https:
//youtu.be/L8OOzaqS37s?si=zPnIcyGIlu7lIcmK (acesso em 03/09/2025) (citado
nas pgs. 3, 15, 16).

[Kroah-Hartman 2018] Greg Kroah-Hartman. Linux Kernel Development. Acesso
em: 12 dez. 2021. 2018. url: https://github.com/gregkh/kernel-development/blob/
bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf (citado nas
pgs. v, 9).

[Kroah-Hartman 2025] Greg Kroah-Hartman. kernel-history: Linux kernel history

logs and stats. Repositório GitHub. Acesso em: 06 set. 2025. 2025. url: https :
//github.com/gregkh/kernel-history (citado na pg. 15).

https://doi.org/10.21275/SR24127210817
https://www.cs.huji.ac.il/~feit/papers/LinuxDev12JSS.pdf
https://www.gnu.org/philosophy/free-sw.pt-br.html
https://youtu.be/L8OOzaqS37s?si=zPnIcyGIlu7lIcmK
https://youtu.be/L8OOzaqS37s?si=zPnIcyGIlu7lIcmK
https://github.com/gregkh/kernel-development/blob/bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf
https://github.com/gregkh/kernel-development/blob/bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf
https://github.com/gregkh/kernel-history
https://github.com/gregkh/kernel-history

56

REFERÊNCIAS

[Neto 2022] Rubens Gomes Neto. Simplificando o processo de contribuição para o kernel

linux: a evolução da ferramenta kernelworkflow. Monografia Final. MAC 499 — Tra-
balho de Formatura Supervisionado. Supervisor: Paulo Meirelles. Cossupervisor:
Rodrigo Siqueira. 2022 (citado nas pgs. 3, 17, 52).

[Passos et al. 2025] Rafael Passos, Arthur Pilone, David Tadokoro e Paulo Meirelles.
“ Streamlining Analyses on the Linux Kernel with DUKS ”. In: 2025 IEEE Working

Conference on Software Visualization (VISSOFT). Los Alamitos, CA, USA: IEEE
Computer Society, set. de 2025, pp. 125–128. doi: 10.1109/VISSOFT67405.2025.
00025. url: https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.
00025 (citado na pg. 1).

[Silberschatz et al. 2018] A. Silberschatz, P.B. Galvin e G. Gagne. Operating System

Concepts. Wiley, 2018. isbn: 9781119124894. url: https://books.google.com.br/
books?id=FHJlDwAAQBAJ (citado na pg. 1).

[Tadokoro et al. 2025] David Tadokoro, Rodrigo Siqueira e Paulo Meirelles.
“Kworkflow: a linux kernel developer automation workflow system”. In: Pro-

ceedings of the Free Software Competence Center, Institute of Mathematics and

Statistics, University of São Paulo. University of São Paulo. São Paulo, Brazil, 2025
(citado nas pgs. 12, 14).

[Tan et al. 2020] Xin Tan, Minghui Zhou e Brian Fitzgerald. “Scaling open source
communities: an empirical study of the linux kernel”. In: Proceedings of the 42nd In-

ternational Conference on Software Engineering (ICSE 2020). ACM / IEEE Computer
Society, 2020, pp. 1222–1234. doi: 10.1145/3377811.3380920 (citado na pg. 6).

[Tanenbaum e Bos 2023] A.S. Tanenbaum e H. Bos. Modern Operating Systems, Global

Edition. Pearson Education, 2023. isbn: 9781292727899. url: https://books.google.
com.br/books?id=cHa2EAAAQBAJ (citado na pg. 1).

[The Linux Kernel Documentation 2023] The Linux Kernel Documentation.
How the development process works. Parte de “A guide to the Kernel Development
Process” — versão v4.14. 2023. url: https://www.kernel.org/doc/html/v6.17/
process/2.Process.html (acesso em 04/09/2025) (citado nas pgs. 7–9).

[Torvalds 1991a] L. Torvalds. Free minix-like kernel sources for 386-AT. Email enviado
para o newsgroup comp.os.minix. Arquivado em LWN.net: https://lwn.net/2001/
0823/a/lt-release.php3. Out. de 1991 (citado na pg. 1).

[Torvalds 1991b] L. Torvalds. What would you like to see most in minix? Email enviado
para o newsgroup comp.os.minix. Arquivado em LWN.net: https://lwn.net/2001/
0823/a/lt-announcement.php3. Ago. de 1991 (citado na pg. 1).

https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.00025
https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.00025
https://books.google.com.br/books?id=FHJlDwAAQBAJ
https://books.google.com.br/books?id=FHJlDwAAQBAJ
https://doi.org/10.1145/3377811.3380920
https://books.google.com.br/books?id=cHa2EAAAQBAJ
https://books.google.com.br/books?id=cHa2EAAAQBAJ
https://www.kernel.org/doc/html/v6.17/process/2.Process.html
https://www.kernel.org/doc/html/v6.17/process/2.Process.html
https://lwn.net/2001/0823/a/lt-release.php3
https://lwn.net/2001/0823/a/lt-release.php3
https://lwn.net/2001/0823/a/lt-announcement.php3
https://lwn.net/2001/0823/a/lt-announcement.php3

	Introdução
	Fundamentação Teórica
	Software livre
	Processo de contribuição em Software Livre

	O Kernel Linux
	O Modelo de desenvolvimento do kernel Linux
	Contribuindo para o Kernel Linux

	Kernel Workflow
	Arquitetura
	Funcionalidades
	O problema da contribuição no desenvolvimento de software livre

	Contribuições para o kw
	CRUD banco de dados
	KW Manage Contacts
	Objetivos
	Arquitetura
	Funcionalidades
	Enviar patches para grupos
	Resultados

	KW Patch track
	Objetivos
	Arquitetura
	Funcionalidades
	Próximos Passos
	Resultados

	Considerações Finais
	Referências

