UNIVERSIDADE DE SA0 PAuLO
INSTITUTO DE MATEMATICA,
EstATisTiCcA E CIENCIA DA COMPUTACAO
BACHARELADO EM CIENCIA DA COMPUTAGAO

Automatizacao do fluxo de submissoes de
patches para o kernel Linux através do
kworkflow

Jodo Guilherme Barbosa de Souza

MONOGRAFIA FINAL

MAC 499 — TRABALHO DE
FORMATURA SUPERVISIONADO

Supervisor: David de Barros Tadokoro

Cossupervisor: Paulo Roberto Miranda Meirelles

S30 Paulo
2025



O conteudo deste trabalho é publicado sob a licengca CC BY 4.0

(Creative Commons Attribution 4.0 International License)


https://creativecommons.org/licenses/by/4.0/

Resumo

Jodo Guilherme Barbosa de Souza. Automatizacao do fluxo de submissdes de patches
para o kernel Linux através do kworkflow. Monografia (Bacharelado). Instituto de
Matematica, Estatistica e Ciéncia da Computacio, Universidade de Sao Paulo, Sdo Paulo,
2025.

O desenvolvimento do kernel Linux ocorre em um ambiente de grande escala e alta complexidade,
baseado em um modelo de desenvolvimento perpétuo que envolve ciclos continuos de integragéo, estabili-
zacdo e manutencio de versdes. Nesse contexto, o processo de submisséo e revisdo de patches é realizado
majoritariamente por meio de listas de e-mail, o que imp&e desafios significativos relacionados a organizacio
das contribuigdes, a rastreabilidade das revisdes, a sobrecarga dos mantenedores e ao alto custo de entrada
para novos desenvolvedores, além de fragmentar o fluxo de trabalho ao exigir o uso de multiplas ferramentas
externas. Com o objetivo de mitigar essas limitac¢des, este trabalho propoe a ampliagdo do Kworkflow (kw),
uma ferramenta de software livre voltada a automacéo do fluxo de contribui¢éo ao kernel Linux, por meio
da introducéo de mecanismos para a gestdo e o acompanhamento de patches durante a fase de revisdo, con-
cretizados nos modulos kw manage contact, responsavel pela organizacio e disponibilizacio de informacdes
sobre mantenedores e revisores, e kw patch-track, voltado ao monitoramento do estado e da evolugéao dos
patches submetidos as listas de e-mail. As solu¢des apresentadas integram-se as funcionalidades existentes
do kw, permitindo centralizar informacdes provenientes das listas de e-mail, automatizar etapas recorrentes
do processo de revisdo e oferecer uma visao mais integrada do ciclo de contribuicdo, contribuindo para a
redugdo da sobrecarga cognitiva dos desenvolvedores e para a melhoria da eficiéncia e da transparéncia

do processo de desenvolvimento do kernel Linux.

Palavras-chave: kernel Linux. kworkflow. kw mange-contacts. kw patch-track. Fluxo de submisséo de

patches. Gerenciamento de contatos de email.






Abstract

Joao Guilherme Barbosa de Souza. Automating the Linux kernel patch submission
flow using kworkflow. Capstone Project Report (Bachelor). Institute of Mathematics,

Statistics, and Computer Science, University of Sdo Paulo, Sdo Paulo, 2025.

The development of the Linux kernel takes place in a large-scale and highly complex environment,
based on a perpetual development model that involves continuous cycles of integration, stabilization, and
maintenance of released versions. In this context, the submission and review of patches are conducted
primarily through mailing lists, which introduces significant challenges related to contribution organiza-
tion, review traceability, maintainer workload, and the high entry barrier for new developers, as well as
fragmenting the workflow by requiring the use of multiple external tools. To address these limitations,
this work proposes the extension of Kworkflow (kw), a Free/Libre and Open Source Software (FLOSS) tool
aimed at automating the Linux kernel contribution process, through the introduction of mechanisms for
managing and tracking patches during the review phase, implemented in the kw manage contact module,
which organizes and provides information about maintainers and reviewers, and the kw patch-track module,
which monitors the status and evolution of patches submitted to mailing lists. The proposed solutions
integrate with existing kw functionalities, enabling the centralization of information from mailing lists,
the automation of recurring review tasks, and the provision of a more integrated view of the contribution
lifecycle, thereby contributing to reduced developer cognitive load and to improvements in the efficiency

and transparency of the Linux kernel development process.

Keywords: kernel Linux. kworkflow. kw mange-contacts. kw patch-track. Patches submission workflow.

email contacts managment.






Lista de figuras

1.1 O processo de um patch do kernel (KroaH-HARTMAN, 2018) . . . . . .. 9
2.1 Arquitetura conceitual do kw Fonte: TaApokORO et al., 2025 . . . . . . . . .. 12
3.1 Diagrama Entidade-Relacionamento do kw manage-contacts . . . . . . . 24
3.2 Exemplo do comando “group_show” para um grupo especifico. . .. . . 33
3.3 Exemplo do comando “group_show” sem um grupo especificado. . ... 33
3.4 Diagrama Entidade-Relacionamento do Kw patch_track . . . . . ... .. 37
3.5 Identificando a contribui¢do Kw patch_track . . .. ... ... ... ... 38
3.6 Resultado do comando send_patch . . . . ... ... ... ... ... ... 39
3.7 Arquivo de um patch com alteracdes propostas . . . . . . ... ... ... 39
3.8 Abrindo uma contribuicidonomutt . .. ... ... ... ... ... ... 40
3.9 Configurando imap_user e imap_pass parao mutt . . . . . . .. . ... . 41
3.10 Identificando o repositorio de uma contribui¢do . . . . ... . ... ... 42
3.11 Identificando o mantenedor de um repositério . . . ... ... ... ... 43
3.12 Atualizacdo manual do status de um patch via Kw patch-track . .. . .. 47

Lista de tabelas

2.1 comandos do kw. Fonte: Reproduzido de TADOKORO et al., 2025, p. 4 . . . 14



vi

Lista de programas

3.1
3.2
33
3.4
3.5
3.6
3.7

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

3.20
3.21
3.22
3.23
3.24

codigo select_fromantigo. . . . . ... ..o
snippet uso funcao select_from_antiga. . . . . ... ... ... ... ...
codigo select frommnovo. . . . . ... Lo
snippet uso fun¢éo select_from_nova. . . ... ... ... .. ...
codigo remove_from antigo. . . . .. ... oo oL
codigo remove_frommnovo. . . . ... Lo
codigo generate_where_clause utilizado nas novas funcdes para gerar a
clausula WHERE SQL a partir dos parametros passados. . . . . ... ..
coddigoupdate_into. . . . . ...
codigo generate_set_clause utilizado para permitir especificar quais atri-
butos serdo alterados e quais serdo seus novos valores. . . ... ... ..
snippet uso funcdo update_into. . . . . ... ... oo oo
modelagem sql kw manage-contacts . . ... ... ... ...
comandos kw manage contacts. . . . . ... ... Lo
create_email group e create_group. . . . . . ... ...
remove_email_group e remove_group. . . . . ... ... ... ... ..
rename_email_group e rename_group. . . . . .. . ... ...
add_email contacts e add_contact_group . . ... ... ... ... ..
show email groups, print_groups_infos e print_contacts_infos. . . . ..
Funcdo send_patch_main com métodos —to-groups e cc-groups. . . . . .
op¢des do comando -send do kw send-patch contendo o to-groups e o
CC-GIOUPS. « v v v v e et e et e e e e e e
comandos kw patch-track. . . . . ... .o Lo
arquivo de configuracdées mutt. . . . ... ... Lo oL
Codigo update_contribution_status . . . . . ... ... ... L.
Codigo update_patch_status . . . .. ... ... L L.

Coédigo decide_contribution_status . . . . ... ... ... oL

18
19
19
20
20
20

21
22

22
23
24
25
25
26
28
29
31
33

35
37
40
43
44
46



Sumario

Introducao

1 Fundamentacao Teorica

1.1

1.2

Software livre . .

1.1.1

Processo de

O Kernel Linux . .

1.2.1
1.2.2

O Modelo d

contribuicdo em Software Livre . . . ... ... ...

e desenvolvimento do kernel Linux . . ... ... ..

Contribuindo para o Kernel Linux. . . . ... ... ... .....

2 Kernel Workflow

2.1
2.2
2.3

Arquitetura . . . .

Funcionalidades .

O problema da contribui¢do no desenvolvimento de software livre . . . .

3 Contribuicoes para o kw

3.1
3.2

3.3

CRUD bancodedados . . . . . ... ... ... ... ... ...
KW Manage Contacts . . . . . . ... ... ...
3.21  Objetivos . . . . . . .
3.22 Arquitetura . . . ... L.
3.23 Funcionalidades . . . . . . ... ... ... ... . o ...
3.24 Enviar patches paragrupos . . ... ... ... ... .......
325 Resultados . . . ... ... ... ...
KW Patchtrack . ... ... ...
3.3.1  Objetivos . . . . . ..
3.3.2 Arquitetura . . . ...
3.3.3 Funcionalidades . . . . .. ... ... ... ... .. . ...
334 ProximosPassos . . . ... ... oo

3.35

Resultados

0 N o G

11
12
13
14

17
17
23
23
23
25
33
35
35
36
36
37
47
48

vii



viii

4 Consideracoes Finais

Referéncias

51

55



Introducao

Computadores sdo parte central da vida em sociedade, servindo como pilar das relagoes
modernas. Um Sistema Operacional (SO) é um conjunto de softwares que, de acordo com
TANENBAUM e Bos (2023), realiza duas fung¢des principais: abstraciao e gerenciamento
do hardware que compde as maquinas. Isto possibilita a interac¢do entre ser humano e
computador, tanto para a sua programacdo quanto para o seu uso, de forma simplificada e
eficiente. Em sua composicao, os SOs sdo divididos em diversos componentes especificos,
dentre os quais o kernel (em portugués, niicleo) é considerado a parte central. Este fato
decorre principalmente das responsabilidades atribuidas a ele, que incluem a gestio da
alocacgdo de recursos entre programas em execugao, o escalonamento de atividades criticas
e o gerenciamento da comunicagido entre periféricos (mouse, teclado, placas de video
dedicadas, entre outros) e o sistema. Absorver estas e inimeras outras complexidades
permite, por exemplo, que um simples programa colete input do usuario e o imprima na
tela sem que o programador se preocupe em como o computador faz isto. Por baixo dos
panos, o kernel processa a¢des do usuario por meio dos dispositivos de entrada, coordena o
uso do processador, memoria e outros recursos internos e, por fim, apresenta os resultados
de forma significativa ao usuario, através dos dispositivos de saida. Nesta ilustracio, se
faz clara a responsabilidade do kernel de abstrair as especificidades de como realizar tais
operacdes provendo uma interface de chamada de sistema ao mesmo tempo que gerencia
os recursos sendo usados (SILBERSCHATZ et al., 2018).

Dentre as diversas implementacdes de kernel existentes, o Linux, criado por Linus
Torvalds e lancado em 1991, destaca-se como um dos mais relevantes. Mesmo que nao
advogando explicitamente pelo movimento de software livre, Torvalds comecou o projeto
Linux como uma alternativa a hegemonia dos SOs proprietarios (TOrRvALDS, 1991a; TOR-
VALDS, 1991b), como o Unix, sendo construido de forma colaborativa por uma comunidade
de desenvolvedores e disponibilizando livre acesso ao seu codigo e documentagéao. O kernel
Linux é atualmente o maior projeto de software livre do mundo, utilizado por grandes
empresas de tecnologia e computagdo, com incontaveis SOs que o usam como kernel (as
chamadas distribuic¢des Linux), rodando em, pelo menos, aproximadamente 58%' de todos
os servidores web. Do ponto de vista de engenharia de software, ap6s mais de trés décadas
desde seu lancamento, o projeto vem tendo um aumento no niimero de contribuigdes e
pessoas envolvidas em cada ciclo de desenvolvimento das versoes stable kernels (PAssos
et al., 2025), sem considerar outros esfor¢os como desenvolvimento downstream.

131% constam como SOs desconhecidos e acredita-se que boa parte destes sejam Linux. Fonte: https:
//w3techs.com/technologies/details/os-unix; acessado em 9 de dezembro de 2025.


https://w3techs.com/technologies/details/os-unix
https://w3techs.com/technologies/details/os-unix

INTRODUCAO

Para sustentar esse ciclo continuo de desenvolvimento, o kernel Linux adota um mo-
delo rigoroso descrito por Feitelson (FEITELSON, 2012) como modelo de desenvolvimento
perpétuo, no qual novas funcionalidades, corre¢des e versdes de producio séo liberadas
continuamente, a0 mesmo tempo em que versdes mais antigas permanecem em manuten-
cao. Esse modelo é estruturado em trés etapas principais. A primeira, denominada janela
de mesclagem (do inglés, merge window), corresponde ao periodo em que os patches dos
subsistemas e drivers ja testados e validados sdo enviados a mainline, sob supervisao de
Linus Torvalds, para integracdo ao kernel principal. Na pratica, os contribuidores enviam
patches continuamente aos subsistemas de que participam (por exemplo, IIO ou AMD-
GFX), independentemente da fase do ciclo de releases. Durante a merge window, esses
patches previamente testados e acumulados sdo submetidos a mainline, dando inicio ao
processo formal de integragao. A partir dessas integracdes, é lancada uma versao inicial do
novo kernel, denominada de -rcl, iniciando-se a segunda etapa, o periodo de estabilizacéo,
durante o qual apenas correcdes e melhorias incrementais sdo aceitas.

Por fim, ao atingir o nivel de qualidade necessario, a versao final para este ciclo é
oficialmente lancada, e uma equipe reduzida (conhecida como o stable team) passa a atuar
na manutencdo continua desta versao, liberando novas corre¢des enquanto uma nova
janela de mesclagem é aberta.

Fora do ciclo de releases, embora este ocorra de forma consecutiva e estruturada, os
contribuidores enviam suas contribui¢des continuamente para os subsistemas especificos,
como II0, AMD-GFX e outros, testando e validando localmente seus patches. Mantenedores
e a comunidade se encarregam de gerir essas contribuicdes, aplicando revisdes e testes,
garantindo a integracdo adequada com a mainline, e é neste contexto que o processo de
revisdo de codigo se torna mais significativo, mesmo que algumas interacoes diretas com
Linus ou entre subsistemas ocorram em casos especificos.

Dentro desse fluxo continuo de contribuicdo, os patches exigem um processo de prepa-
ragdo que envolve diversas etapas, como o design — em que sdo definidas as concepgdes
iniciais e as implementacdes necessarias —, a revisio — em que as contribuicdes sdo
avaliadas pela comunidade e pelos mantenedores —, e a fase de mesclagem e manutencéo,
em que o desenvolvedor continua responsavel por eventuais ajustes apds a integracao.
Considerando a complexidade inerente a um sistema operacional, desenvolver para o
kernel Linux representa um desafio significativo para a maioria dos programadores, em
razdo do amplo conhecimento pratico e tedrico exigido.

Com o intuito de reduzir parte dessas dificuldades, a comunidade desenvolveu ferra-
mentas destinadas a automagao dos fluxos de trabalho. Entre elas, destaca-se o Kworkflow
(kw), uma ferramenta de software livre desenvolvida majoritariamente em Bash script, que
tem como objetivo oferecer uma solucao unificada para os diversos desafios enfrentados
pelos desenvolvedores do kernel. Para isso, o kw integra e simplifica ferramentas e servicos
amplamente consolidados na comunidade, como Git, o arquivo do Lore e o b4, criando solu-
¢Oes locais quando necessario. A ferramenta organiza-se como um hub de funcionalidades,
recebendo comandos do usuério via linha de comando e redirecionando a execugio para o
modulo apropriado, de modo a oferecer uma interface Unica para todo o processo.

Apesar da ampla estrutura ja existente, compreender de forma completa o fluxo de
contribuicdo ao kernel continua sendo um desafio que o kw busca superar, permanecendo



INTRODUCAO

em constante desenvolvimento pela comunidade. Além de automatizar o workflow de
desenvolvimento de patches, o kw tem o objetivo de se constituir como um software
cientifico e, para isso, precisa ser capaz de fornecer rastreabilidade das contribuicdes, coletar
dados do processo e possibilitar sua analise empirica, tornando possivel que pesquisas,
principalmente em Engenharia de Software, sejam desenvolvidas tendo como base a
ferramenta.

Um dos processos ainda em aberto consiste em automatizar a gestdo dos patches apos
a submissdo e antes da aprovagao, periodo em que as contribui¢des passam pela revisao
dos mantenedores — uma etapa particularmente complexa no modelo de contribui¢do
por listas de e-mail adotado pelo projeto Linux.

Um dos grandes desafios no desenvolvimento de sistemas de software é coordenar
o trabalho simultaneo de diversos colaboradores, o que envolve a gestdo de versdes,
submissoes e atualizacOes. Antes do surgimento dos sistemas de controle de versdo, esse
processo era realizado manualmente, com métodos como cdpias redundantes e conven-
coes de nomenclatura, o que se mostrava inconsistente e de dificil manutencdo. Com a
introdugao dos Version Control Systems (VCS), tornou-se possivel registrar o histérico das
alteracdes e recuperar versdes anteriores. A evolucdo desses sistemas levou ao surgimento
dos modelos distribuidos, como o Git, que permitiram maior flexibilidade e paralelismo,
possibilitando que cada colaborador mantivesse uma copia local do cdédigo e realizasse
integragdes controladas de suas modificacoes.

Mesmo assim, conforme aponta GREG KroaH HARTMAN (2016), ferramentas como
GitHub e Gerrit, embora adequadas a projetos menores, ainda apresentam limitacdes
quando aplicadas a softwares de grande escala, como o kernel Linux. Entre os principais
entraves estdo o tempo elevado de revisao, a dificuldade de organizacdo e categorizagio
de problemas, a baixa acessibilidade das discussoes internas e a sobrecarga das listas de
pendéncias dos mantenedores. Parte dessas dificuldades é mitigada pelo uso de servidores
de e-mail como meio principal de contribuicdo, que, embora resolvam alguns problemas
de escalabilidade, introduzem outros desafios, como o alto custo de entrada para novos
desenvolvedores, a rastreabilidade limitada das revisdes, a sobrecarga das caixas de entrada,
a possibilidade de corrupg¢ao de arquivos e a dificuldade de coletar métricas sobre o processo
de desenvolvimento. Além disso, a necessidade de recorrer a ferramentas externas, como
navegadores ou clientes de e-mail, fragmenta o fluxo de trabalho, afastando-se do principio
do kw de oferecer uma experiéncia integrada.

A dependéncia de sistemas de e-mail representa, portanto, uma limitacio a proposta
do kw de abranger o processo de desenvolvimento de forma holistica. O usuario submete
suas alteracdes por meio do kw, mas precisa recorrer a outros meios para acompanhar
revisOes e retornar a ferramenta para atualizar suas submissdes, o que dificulta também a
analise completa do fluxo de contribuicio — um dos objetivos centrais do projeto.

Considerando esse cenario, este trabalho da continuidade ao processo de melhoria
continua do kw, iniciado por iniciativas anteriores, como Simplificando o processo de
contribuigdo para o kernel Linux (NETO, 2022) e o Integrating the Kworkflow system with the
Lore archives: Enhancing the Linux kernel developer interaction with mailing lists (BARROS
TADOKORO, 2023). A proposta aqui apresentada consiste em oferecer aprimoramentos e
automatizagdes voltadas a gestdo de patches durante o processo de revisio, integrando-se



INTRODUCAO

as implementacdes anteriores que introduzem, respectivamente, os fluxos de envio e de
consulta de patches.



Capitulo 1

Fundamentacao Teorica

Este capitulo discute os fundamentos tedricos levantados para a compreensdo do
funcionamento e da gestao do kernel Linux. Nele, sdo abordados a estrutura de gestdo do
projeto e de outros softwares livres, o papel dos mantenedores e o fluxo de desenvolvimento
por meio de patches e arvores de repositorios. Tais defini¢cdes estabelecem a base conceitual
necessaria para detalhar as etapas de integracao de cddigo, a organizagao dos subsistemas
e a dindmica de manutencao continua do sistema.

1.1 Software livre

No mercado computacional, dois principais modos dominam o cenario no que se refere
ao desenvolvimento como software proprietario ou software livre. Em geral, define-se
como software proprietario o software desenvolvido de maneira privada, em que apenas a
aplicacao é acessivel aos usuarios. Em contrapartida, o software livre fundamenta-se na
garantia de acesso ao codigo-fonte e é definido por quatro liberdades estabelecidas pela
FounDATION, 2023: a liberdade de executar o programa para qualquer proposito (liberdade
0), de estudar seu funcionamento e adapta-lo (liberdade 1), de redistribuir copias (liberdade
2) e de distribuir versdes modificadas a terceiros (liberdade 3). Esse conceito abrange
também o movimento Open Source, que, embora apresente motivacdes distintas voltadas
a eficiéncia técnica, compartilha o principio do acesso aberto ao cédigo para viabilizar o
desenvolvimento colaborativo e a transparéncia do projeto

Historicamente, o mercado computacional era dominado por grandes corporagdes, que
detinham o monopdlio do processo, conhecimento e recursos necessarios para o desenvol-
vimento do software como um todo, dificultando o ingresso de outros competidores no
mercado. Nesse cenario, projetos de software livre surgem como um processo disruptivo,
compartilhando o acesso a esse conhecimento, de modo a promover a colaboragio e
inovacdo na industria (AVATAVULUT ef al., 2023).

Esssa abordagens possuem também grande impacto no modo como essas ferramentas
sao produzidas, comparativamente, softwares proprietarios sdo geridos por empresas, que
contratam equipes fixas de funcionarios para trabalhar em periodo integral e de maneira
exclusiva no projeto. Dessa maneira, a decisdo quanto as novas implementagdes para



1 | FUNDAMENTACAO TEORICA

o software sdo centradas, com o principal objetivo, em muitos casos, sendo o de ganho
financeiro. Essa pratica, contudo, muitas vezes implica em que o foco constante seja em
implementac¢des de novas ferramentas ao invés da melhoria do software como um todo,
tornando esses softwares mais propensos a erros e falhas ocasionais. Por outro lado, a
existéncia de responsaveis legais pelo projeto fazem com que esses softwares contem
em grande parte com a existéncia de um suporte especializado, caracteristica valorizada
no mercado corporativo.

De maneira oposta, softwares livres sdo desenvolvidos de maneira colaborativa, con-
tando com a contribui¢ao voluntaria de grandes quantidades de desenvolvedores ao redor
do mundo inteiro. Por conta disso, as demandas surgem de forma espontanea, muitas
vezes da necessidade do proprio usuario que depende do software para usos pessoais.
Essa grande quantidade de contribuidores, aliada a dependéncia mutua destes com o
software, garante atualizacdes frequentes de seguranca e qualidade. Como consequéncia,
esses sistemas tendem a ser menos propensos a erros, mas nio contam com um suporte
dedicado na maioria dos casos.

Hoje, modelos de software livre e proprietario continuam coexistindo no mercado,
sendo constantemente comparados quanto a sua efetividade observada em projetos reais.
Porém, a inegavel vantagem do conhecimento colaborativo e do grande volume de con-
tribuicao que softwares livres conseguem apresentar, fazem com que hoje ele esteja em
ascencao no mercado computacional, sendo o método de desenvolvimento de diversos
softwares relevantes mundialmente, como no caso do kernel Linux.

1.1.1 Processo de contribuicao em Software Livre

Em projetos de software livre, para que a gestdo das contribui¢des seja possivel, os
projetos geralmente contam com uma equipe de mantenedores, que é um grupo interno de
desenvolvedores que possuem responsabilidade geral pelo cddigo principal. Desse modo,
para que sejam integradas, as contribui¢des enviadas pelos contribuidores precisam passar
por revisdes por parte dos mantenedores para garantir que atendam aos requisitos técnicos
definidos para o projeto. De acordo com TaN et al., 2020, os mantenedores devem avaliar
principalmente se uma contribuicdo é necessaria, se uma implementacao apresenta falhas
ou se existem eventuais melhorias na forma como a solucéo foi feita.

Em alguns casos, principalmente devido ao crescimento dos projetos, torna-se necessa-
rio também uma divisdo em componentes do sistema principal, de modo que cada parte
possui seus mantenedores dedicados. Dessa maneira, para que as contribui¢des sejam
feitas de maneira correta, elas precisam ser enviadas diretamente para o responsavel do
subsistema que sera alterado.

1.2 O Kernel Linux

Em um computador, o Sistema Operacional é a parte responsavel por lidar com as
interagdes entre o hardware e o software, permitindo, de maneira eficiente, a interagdo
final maquina-usuario. Para que isso seja possivel, o sistema operacional precisa ser
dividido em diversas partes, dentre essas, o kernel, considerado o nicleo dos sistemas



1.2 | O KERNEL LINUX

operacionais. Em geral, o kernel é um programa que opera a todo momento e é responsavel
pelo gerenciamento dos processos do sistema, alocando recursos para outros programas
em atividade conforme a necessidade e prioridade de cada um.

Dentre os muitos sistemas de kernels existentes, o kernel Linux é um projeto desenvol-
vido por Linus Torvalds, em 1991, como uma resposta direta a hegemonia e as restri¢oes
dos sistemas operacionais proprietarios da época. Enquanto o mercado era dominado pelo
modelo fechado do Unix, Torvalds prop6s uma alternativa fundamentada no livre acesso
ao codigo e na construcio descentralizada.

Essa oposicdo ao modelo proprietario foi um dos motores que permitiu ao Linux escalar
através de contribui¢oes globais, superando as limitagdes de desenvolvimento das empresas
tradicionais. Hoje, o kernel Linux é o maior projeto de software livre do mundo, utilizado
por algumas das maiores empresas de tecnologia, software e computac¢do no mercado,
possuindo diversas distribui¢des e constituindo aproximadamente 57% dos websites na
internet cujos sistemas operacionais puderam ser identificados.'

1.2.1 O Modelo de desenvolvimento do kernel Linux

Ainda que tenha sido langado ha mais de trés décadas, novas versdes do kernel Linux
continuam sendo lan¢adas até hoje. Cada uma das versdes do Linux é construida através
da contribuicdo de diversos desenvolvedores ao redor do mundo, por meio da submisséo
de patches® de melhorias que sdo integrados a versdo principal para o desenvolvimento de
futuras versodes. De acordo com FEITELSON, 2012, esse desenvolvimento do kernel Linux
segue um modelo de desenvolvimento perpétuo, no qual novas funcionalidades, correcdes
e versoes de producio sdo liberadas continuamente, havendo também a manutencéao de
versOes mais antigas. Segundo a THE LINUx KERNEL DOCUMENTATION, 2023, esse processo
divide-se em trés etapas bem distintas: a janela de mesclagem, o periodo de estabilizacdo
e a manutenc¢do continua.

Janela de Mesclagem (Merge Window) Durante a primeira etapa, a maior parte das
alteracOes sera integrada a nova versao do kernel. Essas mesclagens ndo ocorrem de forma
imediata; elas ocorrem a partir de patches que foram previamente preparados, testados
e coletados em arvores de subsistemas ao longo de semanas ou meses. Esse trabalho
prévio de organizacdo pelos mantenedores garante que, ao abrir a janela, o codigo ja
tenha passado por um ciclo de maturacgio inicial. Com base nessa nova versio, o primeiro
kernel RC (Release Candidate) sera langado, encerrando a janela de mesclagem e iniciando
a préxima etapa.

Periodo de Estabilizacao Durante a segunda etapa, apenas patches que sirvam para
correcdo de bugs deverao ser enviados e novas versdes de RC serdo lancadas periodicamente
até que uma versdo estavel seja atingida. De forma objetiva, uma versao estavel é atingida

! Fonte: https://w3techs.com/technologies/details/os-linux

% No contexto de desenvolvimento do kernel, um patch é um arquivo de texto que descreve as diferencas entre
duas versoes do codigo-fonte. Essas contribuicdes sdo enviadas via e-mail para listas de discusséo publicas,
contendo o cddigo alterado e uma descricdo das mudancas (o commit message), para serem revisadas pelos
mantenedores antes da integracio.


https://w3techs.com/technologies/details/os-linux

1 | FUNDAMENTACAO TEORICA

quando todas as regressdes — erros conhecidos que haviam sido superados por versoes
anteriores e foram reintroduzidos durante a janela de mesclagem — séo corrigidas. O foco
aqui é estritamente a confiabilidade do c6digo integrado anteriormente.

Manutencao Continua (Stable Kernels) Contudo, dado o tempo limitado em que as
etapas precisam ocorrer, eliminar todas as regressdes das versdes estaveis nem sempre
¢ um desafio que pode ser atingido plenamente antes do lancamento. Por conta desse
fato, apos a criacao da versdo estavel, o projeto entra na fase dos stable kernels. Nesta
terceira etapa, uma equipe de desenvolvedores é designada para a manutencdo continua,
lancando novas atualiza¢des ocasionais (como as revisdes pontuais da versdo principal)
com corregdes criticas para essa versdo por um periodo de tempo, enquanto a janela de
mesclagem se reinicia para a nova versao.

1.2.2 Contribuindo para o Kernel Linux

Assim como outros softwares livres, o kernel Linux também apresenta uma divisdo
logica com base no seu conjuntos de subsistemas, como, por exemplo, os sistema de rede,
gerenciamento de memoria, dispositivos de video, etc. Dentro desses subsistemas, cada
mantenedor responsavel administra um repositorio de fontes do kernel, gerindo os patches
enviados ao seu subsistema. Ainda segundo a documentacéo oficial (THE Linux KERNEL
DOCUMENTATION, 2023), eventualmente, esses subsistemas podem ser identificados de
modo que um subsistema principal seja constituido por subsistemas menores, como, por
exemplo, o subsistema de rede, que agrega também os repositorios dedicadas a drivers de
dispositivos de rede cabeadas e de redes sem fio. Desse modo, além dos patches recebidos
diretamente por contribuidores, os mantenedores podem receber também receber patches
ja aprovados por outros mantenedores, formando uma cadeia de confianca até que os
patches cheguem a ser integrados (Figura 1.1).

Para gerir esse modelo de contribuigao, o cddigo do kernel Linux é organizado em
um modelo de repositorios separados, conhecidos como drvores do kernel (kernel trees),
contendo versdes especificas do projeto, com suas respectivas finalidades e responsaveis.
A principio, cada subsistema do kernel possui uma arvore especifica, gerida pelos mante-
nedores responsaveis pela secdo do projeto, nas quais novas contribui¢des aceitas serdo
acumuladas e testadas previamente. Posteriormente, para que as novas versoes sejam
construidas, utiliza-se como base a arvore mainline — o repositorio central e oficial do
kernel, administrado diretamente por Linus Torvalds, que contém o c6digo da versao em
desenvolvimento e das futuras releases. Durante a janela de mesclagem, sao construidas as
arvores -next, que funcionam como arvores de integracdo ramificadas da mainline para
reunir as novas submissdes dispersas nas diversas arvores de subsistemas. A partir dela,
apos a janela de mesclagem e durante o periodo de estabilizacao, serdo criadas as arvores
de estabilizacdo, nas quais serdo organizadas as corre¢des da nova versdo até que, por fim,
essas alteracdes venham a ser consolidadas na arvore mainline definitiva.

Em paralelo a execucdo das etapas formais do ciclo, o desenvolvimento nos subsistemas
especificos, a exemplo do IIO e AMD-GFX, ocorre de forma ininterrupta. Antes da submis-
sao aos mantenedores, os contribuidores realizam a valida¢ao local dos patches, iniciando
um fluxo de trabalho que precede a janela de mesclagem. A gestio dessas contribuic¢des



1.2 | O KERNEL LINUX

Linus
Torvalds

subsystem
maintainer

driver/file
maintainer

subsystem subsystem
maintainer maintainer
driver/file driver/file driver/file

maintainer maintainer maintainer

—

Figura 1.1: O processo de um patch do kernel (KROAH-HARTMAN, 2018)

pela comunidade e pelos mantenedores envolve ciclos constantes de testes e revisoes,
assegurando que o cddigo esteja estabilizado para a integracdo na mainline. (THE LINUX
KERNEL DOCUMENTATION, 2023).

Os principais estagios que um patch deve passar, sdo:

1. Design: Nesta etapa, serdo levantados os requisitos do patch e a forma com que
serdo atingidos, ou seja, a identificacdo dos seus objetivos e as necessidades técnicas
que devem constar nessa implementacéo.

2. Revisao antecipada: Publicagdo dos patches na lista de discussdo relevante para que
desenvolvedores possam responder com comentarios e ajudar a revelar quaisquer
problemas iniciais.

3. Revisao mais ampla: Antes que o patch seja considerado para inclusdo na versao
principal, ele deve ser aceito por um mantenedor de subsistema, que o incluira nas
arvores -next. Com essa etapa, revisdes mais elaboradas e possiveis problemas de
integracdo com outras implementacdes poderio ser verificados.

4. Mesclagem e manutencio de longo prazo: Ainda que o patch possa ser mesclado
e chegar efetivamente a versdo estavel do kernel, futuros problemas podem vir a
aparecer durante essas fases, dessa forma, o desenvolvedor original deve continuar
a assumir a responsabilidade da manutencao do cédigo no futuro.






Capitulo 2

Kernel Workflow

Atualmente, considerada toda a complexidade envolvida em um sistema operacional,
desenvolver para o kernel Linux pode ser uma tarefa extremamente desafiadora para
a maioria dos desenvolvedores. Além do conhecimento teérico sobre a arquitetura do
sistema, diversos conhecimentos praticos precisam ser empregados antes que qualquer
contribui¢io possa, de fato, ser iniciada. A exemplo, por se tratar do nucleo de um sistema
operacional, o dominio de ferramentas e técnicas para criacdo de ambientes seguros de
teste, como o uso de maquinas virtuais e ambientes isolados, se fazem necessarios para
validar altera¢cdes sem comprometer o sistema principal do desenvolvedor. Além disso,
é preciso saber construir e implantar esses ambientes — envolvendo etapas de build e
deploy — de modo a reproduzir com precisdo o comportamento do kernel em diferentes
cenarios e arquiteturas dos computadores.

Tendo conhecimento desses fatos, diversas ferramentas sdo construidas pela comuni-
dade para automatizagio desses fluxos. Dentre elas, o0 Kworkflow (kw)! é uma ferramenta
de software livre, desenvolvida principalmente em Bash, que surge com o objetivo de
apresentar uma solucio unificada para as diversas dificuldades que desenvolvedores do
kernel podem encontrar. Além de automatizar o workflow de desenvolvimento de patches,
um dos objetivos do kw é se constituir também como um software cientifico, permitindo que
pesquisadores de Engenharia de Software e areas correlatas estudem o desenvolvimento
do kernel Linux de forma empirica e préoxima da pratica.

Para que o kw cumpra esse papel cientifico, é necessario que ele forneca mecanismos
de coleta e registro de dados do processo de contribuicdo, garanta rastreabilidade das
alteracoes e interagdes entre desenvolvedores, possibilite a reconstrugdo de cenarios de
revisdo de codigo e permita a analise estatistica ou qualitativa dos fluxos de trabalho. Essas
funcionalidades tornam possivel investigar padrdes de colaboracio, eficiéncia de processos,
dificuldades enfrentadas pelos contribuidores e comportamento de manutencao de software
de larga escala, transformando o kw em uma ferramenta de pesquisa robusta, além de um
utilitario pratico para o desenvolvimento de patches. Promovendo assim um ambiente
de desenvolvimento mais simples e rapido, reduzindo a carga de conhecimento prévio

1 O repositorio do projeto esta disponivel em https://github.com/kworkflow/kworkflow e o seu sitio oficial
em https://kworkflow.org/.

11


https://github.com/kworkflow/kworkflow
https://kworkflow.org/

12

2 | KERNEL WORKFLOW

necessaria para novos desenvolvedores e consolidando um meio pelo qual seja possivel
medir de forma precisa o ciclo de contribuicdo. Possibilitando ainda que novas solu¢des
possam ser planejadas e que o impacto real das ferramentas ja empregadas seja mensurado.

2.1 Arquitetura

Para que o software seja capaz de agrupar tantas ferramentas, o kw segue uma or-
ganizagdo estrutural especifica em 5 partes:

kw
(hub)

Y Y
deplo build send- confi
ploy patch 9
FEATURES
Y
kernel _ .
install @ ‘

PLUGINS LIBRARIES

Figura 2.1: Arquitetura conceitual do kw Fonte: TADOKORO et al., 2025

1. Hub: Para permitir que todas as ferramentas do kw sejam oferecidas através de uma
interface Unica, o software utiliza-se de um arquivo central, o kw.sh. Esse arquivo
atua como um hub — representado pela cor verde na Figura 2.1 — sendo o responsavel
por receber os comandos iniciais dos usuarios no terminal e redirecionar a execucio
para a ferramenta especificada.

2. Componentes: Cada ferramenta do kw possui um arquivo principal que contém o
processamento central do comando. Esta camada corresponde a se¢do azul denomi-
nada FEATURES na Figura 2.1, incluindo a lista de comandos especificos para cada
funcionalidade e uma secio de ajuda para orientacido dos usuarios.

3. Bibliotecas: O kw utiliza um esquema de bibliotecas para permitir o comparti-
lhamento de coédigo genérico entre diferentes ferramentas. Conforme ilustrado na
secdo amarela (LIBRARIES) da Figura 2.1, essas implementacdes sdo agrupadas por
similaridade de contexto, como manipulagio de textos, operacdes em banco de dados
ou tratamento de data e hora.

4. Plugins: Codigos dependentes de contextos externos ou com alta volatilidade de
desenvolvimento sdo isolados em arquivos especificos. Estes plugins, identificados na



13

2.2 | FUNCIONALIDADES

cor vermelha (PLUGINS) na Figura 2.1, permitem que o c6digo principal permaneca
estavel, aproveitando os métodos declarados independentemente das alteracdes nas
implementacdes internas desses plugins.

5. Documentacao: Para manter o registro das implementacoes e informacdes necessa-
rias para colaboradores, o kw mantém um sistema de documentacao, que também é
utilizado para a construcédo do blog da ferramenta.

2.2 Funcionalidades

Para compor o seu ferramental e permitir um ambiente holistico, o kw utiliza-se da
integracao e simplificacdo de automagdes consolidadas na comunidade, como o Git, Lore,
b4, e outros, desenvolvendo solugdes locais quando necessario. De acordo com BARROs
TADOKORO, 2023, as automacdes desenvolvidas para o kw dividem-se em dois tipos, as
praticas e as indiretas. As implementacoes praticas afetam diretamente o desenvolvimento
do kernel, como o kw build e o kw deploy, utilizados para a criacdo e aplicagdo da imagem
com as altera¢des do desenvolvedor. Adicionalmente, existem as ferramentas indiretas,
que impactam o fluxo de trabalho de forma abrangente, como o kw send-patch e o kw-patch
hub, voltados, respectivamente, a submissao e consulta de patches no lore.

Por se tratar de uma ferramenta de terminal, os comandos do kw precisam ser invocados
de forma escrita pelo usuario, seguindo, a seguinte estrutura: kw <comando> <parametros>.
Até o momento, as principais funcionalidades existentes na ferramenta, sao:



14

2 | KERNEL WORKFLOW

Command Category Description

build kernel build/deploy Build kernel and modules

deploy kernel build/deploy Deploy kernel and modules

kernelconfig- | kernel build/deploy Manage .config files

manager

env kernel build/deploy Manage different environments for
same kernel tree

bd kernel build/deploy Build and Deploy kernel and modu-
les

send-patch patch submission Send patches via email

maintainers

patch submission

get_maintainers.pl wrapper

codestyle patch submission checkpatch.pl wrapper

remote target machine Manage machines in the network
vm target machine QEMU wrapper

ssh target machine ssh wrapper

device target machine Show hardware information
debug code inspection Linux debug utilities

explore code inspection Explore string patterns

diff code inspection Diff files

init kw management Initialize kw kernel tree

config kw management Set kw configs

self-update

kw management

Self-update mechanism

backup kw management Save and restore kw data
clear-cache kw management Clear kw cache

patch-hub misc TUI for patches from lore.kernel.org
drm misc DRM specific utilities

pomodoro misc Pomodoro technique

report misc Show usage statistics

Tabela 2.1: comandos do kw. Fonte: Reproduzido de TADOKORO et al., 2025, p. 4

Apesar da grande estrutura, compreender de forma completa o fluxo do desenvolvedor
do kernel ainda é um desafio que o kw busca superar, estando em constante processo
de desenvolvimento por parte da sua comunidade. Um dos processos em abertos, ¢ o de
conseguir automatizar o fluxo de gestdo dos patches apds a submissao e antes da aprovacéo,
na qual os patches passam pelo processo de revisdo por parte dos mantenedores, que se
torna um desafio em particular durante a contribuicio para o kernel Linux dado o seu
modelo de contribuicdo nao trivial por listas de email.

2.3 O problema da contribuicao no desenvolvimento
de software livre

Um grande desafio encontrado durante a construcdo de sistemas de software é a
dificuldade de conciliar o trabalho simultaneo dos diversos colaboradores, o que envolve



2.3 | O PROBLEMA DA CONTRIBUICAO NO DESENVOLVIMENTO DE SOFTWARE LIVRE

a capacidade de coordenar as diferentes versdes do projeto e as inumeras submissdes de
alteracdo para a versdo principal. Antes do advento dos sistemas de controle de versao,
os programadores dependiam de métodos manuais para gerenciar suas modificacdes de
codigo. Eles costumavam fazer backups regulares de seus arquivos de cédigo ou adotar
convengdes de nomenclatura para distinguir entre as varias versdes. Esse processo era
bastante inconsistente e dificil de gerenciar, especialmente quando alguns desenvolvedores
estavam trabalhando no mesmo projeto (DEVINENI, 2020).

Gerenciar as versoes de um software se torna um problema ainda maior dependendo do
tamanho total do software, do nimero de contribuidores e da quantidade de contribuicoes
sendo realizadas nele de maneira simultanea. No kernel, por exemplo, a versdo 6.13,
lancada em 19/01/2025, contou com mais de 206 contribuicdes por dia por parte de 2085
colaboradores, resultando em um cédigo fonte final com mais de 39 milhdes de linhas
(Kroan-HARTMAN, 2025). Segundo a tendéncia, esses numeros devem seguir aumentando
de forma constante conforme novas versdes forem sendo desenvolvidas.

Buscando superar parte dessas dificuldades e melhorar o processo colaborativo de
desenvolvimento de software, foram desenvolvidos os sistemas de controle de versio.
Ainda segundo DEVINENT, 2020, os primeiros Version Control Systems (VCS), permitiam
que os desenvolvedores mantivessem um historico das alteracdes realizadas nos arquivos,
o que facilitava a reversdo de mudancas e oferecia visibilidade sobre a evolucao do cddigo.
No entanto, o potencial colaborativo ainda era limitado, exigindo muitos acordos e gestdes
manuais por parte dos colaboradores.

Como segunda op¢éo, surgem os Concurrent Versions System (CVS), baseados em um
modelo de repositorio central. Nele, os desenvolvedores podiam obter os arquivos, aplicar
suas modificagdes e submeté-las novamente ao repositorio. Esse modelo contribuiu para
maior agilidade em equipes de desenvolvimento, ao permitir que varias pessoas trabalhas-
sem simultaneamente na mesma base de co6digo. Ainda assim, em projetos de grande porte
ou com equipes distribuidas geograficamente, os sistemas centralizados apresentavam
limitacdes no gerenciamento eficiente do trabalho.

Por fim, surgem os modelos mais utilizados atualmente, os Distributed Concurrent
Versions System - DVCS, como o Git. Esses sistemas, ao contrario da versao anterior,
distribuia as copias do codigo central entre os desenvolvedores, permitindo um método
mais flexivel de colaboragdo. Como cada colaborador poderia ter uma versao local do
codigo, as mudancas realizadas por ele ao cddigo principal poderiam ser administradas
localmente antes de serem integradas, permitindo trabalhos offline e que alteracdes fossem
submetidas em lotes ao invés de individualmente.

Contudo, de acordo com GREG KroaH HARTMAN, 2016, ainda que softwares como
github? gerrit®> ou outros DVCS possam ser tteis para gerir o fluxo de submissdes de
softwares menores, eles ainda apresentam muitos problemas para escalar para softwares
maiores. Dentre os principais motivos, sdo citados, por exemplo, a maneira como o fluxo
para revisao desses softwares é mais demorado e diminui a produtividade dos mantenedores,
a dificuldade de gerenciar e categorizar os inimeros problemas e submissdes com os

Z https://github.com

* https://www.gerritcodereview.com

15



16

2 | KERNEL WORKFLOW

recursos oferecidos, a maneira como as discussodes e comentarios dentro da comunidade
sdo pouco acessiveis a outros contribuidores, dificultando a propagacdo de informacéo e
gerando retrabalho, a dificuldade para que desenvolvedores possam se conectar a listas de
discussoes e serem notificados sempre que uma novidade relevante ocorra, entre outros.
Parte desses problemas da comunidade, porém, ainda segundo GREG KroAH HARTMAN,
2016, sdo solucionados ao se substituir os softwares de DVCS por servidores de email,
como ¢ feito para a contribui¢do do kernel.

Essa substituicdo, entretanto, também apresenta suas dificuldades, uma vez que, sendo
um sistema com perspectiva muito mais abrangente, servidores de email nao apresentam
funcionalidades e melhorias para esse fluxo. Entre os diversos problemas enfrentados pelo
usuario, destacam-se principalmente o grande overhead inicial para novos contribuidores,
a ma rastreabilidade do historicos de submissdes e revisdes, a escalabilidade limitada,
sobrecarregando a lista de email de alguns mantenedores, problemas de corrupgio de
arquivos, e a dificuldade de se capturar métricas. Além disso, é também nesse fluxo que
ocorre a revisao dos patches, ou seja, a comunicagio direta entre desenvolvedores e mante-
nedores, sendo essencial que as respostas e notificacdes ocorram de forma rapida, dado que
submissoes realizadas durante o periodo de estabilizacdo ou durante a janela de mesclagem
precisam ser avaliadas dentro desses periodos fixos de tempo.

Dada a natureza dessa submissdo, em muitos casos, isso implica ainda que os desenvol-
vedores dependam de ferramentas externas, que ainda precisariam ser configuradas, ou do
proprio navegador para checar a lista de e-mails em softwares acessiveis através da web,
como o gmail, para responder mensagens e acompanhar o status dos patches, sendo um
desafio ainda maior quando o endereco de e-mail utilizado para submissdes é reutilizado
para outros contextos, pois isso aumenta a complexidade de filtrar, organizar e priorizar
as mensagens relevantes, gerando ruido na comunicacao e dificultando a identificacdo
rapida de respostas e revisdes. Por fim, da perspectiva do kw, a dependéncia de sistemas
de email também representa uma fragmentacao no fluxo do software e em seu principio de
englobar de forma holistica o processo de desenvolvimento. Isso porque o usuario submete
alteracdes pelo Kworkflow, mas precisa recorrer a outros meios para acompanhar revisoes
e depois retornar para atualizar suas submissdes, além de impedir a analise completa do
fluxo de contribui¢do, que é um dos objetivos futuros do projeto.



Capitulo 3

Contribuicodes para o kw

Esse trabalho da continuidade a um processo de melhoria continua ao software do
kw, iniciada anteriormente através de outros trabalhos como o Simplificando o processo de
contribuigdo para o kernel Linux de NETO (2022), que estrutura e refatora a documentacio
da ferramenta, implementa a versao inicial do banco de dados e também da funcionalidade
kw mail, posteriormente renomeada para kw send_patch, utilizada para submissdo de
patches através do envio de email’s; e também o trabalho Integrating the Kworkflow system
with the Lore archives: Enhancing the Linux kernel developer interaction with mailing lists,
desenvolvido por BARROS TADOKORO (2023), que implementa o patch-hub — interface de
terminal para os arquivos Lore, permitindo o acesso a uma lista oficial de discussdes e
patches do Kernel Linux.

Como proposta, as contribuicdes oferecidas por esse trabalho focam em oferecer
melhorarias e automatizagdes para a gestao de patches submetidos por parte dos contri-
buidores do kernel linux enquanto estdo sob processo de revisédo, integrando-se ao fluxo
de implementacgdes de seus predecessores que, respectivamente, introduzem o processo
de envio e de consulta de patches ja enviados.

3.1 CRUD banco de dados

Para poder dar suporte para suas diversas funcionalidades, o kw conta com um sistema
de banco de dados, desenvolvido em SQLite3, que armazena informagoes necessarias para
o funcionamento, principalmente, das ferramentas kw pomodoro e kw patch-hub, além de
possuir dados de telemetria sobre a utilizagdo do software pelos usuarios. Para garantir
a consisténcia e seguranca dos dados entre o banco de dados e a aplicacao, é crucial
desenvolver operagdes que lidem com operagdes de manipulacdo, como insercao, leitura,
atualizacdo e dele¢io de dados (conhecidas como CRUD - create, read, update, delete). Essas
operacdes servem como interface entre as diferentes partes do sistema, permitindo uma
interacdo eficaz e garantindo que os dados sejam gerenciados de forma precisa e confiavel.

Contudo, deixar instrucdes SQL dispersas diretamente no cédigo de aplicagdo néo é
considerado uma boa pratica de engenharia de software, pois dificulta a manutencéo, a
legibilidade e a evolucdo do sistema. O ideal é encapsular o acesso ao banco de dados em

17



18

3 | CONTRIBUICOES PARA O KW

funcdes ou camadas de abstracdo que fornecam operacdes de mais alto nivel, reduzindo
o acoplamento entre a logica de negocio e as consultas.

No caso do Kworkflow, desenvolvido em Bash, tal abordagem é limitada pela propria
linguagem, que néo dispde de mecanismos nativos para abstracdo de consultas SQL. Assim,
a interagdo com o banco de dados precisa ser realizada diretamente por meio de comandos
de script, o que torna essa separacdo menos natural, embora ainda desejavel para organizar
e isolar responsabilidades.

Para tal, o software contava com algumas fun¢des implementadas que permitiam a
interacdo com o banco de dados, mas que néo isolavam suficientemente o codigo e as
instrucdes de acesso aos dados, tornando necessario o uso de comandos SQL em alguns
casos. Esse cenario era visivel nos comandos de sele¢do originais (Programa 3.1), que
recebiam trechos na linguagem SQL com a clausula where, utilizada para especificar quais
critérios devem atender os parametros selecionados ou removidos, como exemplificado
no Programa 3.2.

Programa 3.1 cédigo select_from antigo.

function select_from()

{
local table="$1"
local columns="§{2s-"x"}"
local pre_cmd="$3"
local order_by="$4"
local flag=${5:-'SILENT'}
local db="${6:-$DB_NAME}"
local db_folder="${7:-$KW_DATA_DIR}"
local db_path
local query
local cmd

db_path="$(join_path "$db_folder" "sdb")"

if [[ ! -f "$db_path" ]]; then
complain 'Database does not exist'
return 2

fi

if [[ -z "$table" ]]; then
complain 'Empty table.'
return 22 # EINVAL

ik

query="SELECT $columns FROM $table ;"
if [[ -n "${order_by}" ]]; then

query="SELECT $columns FROM $table ORDER BY ${order_by} ;"
fi

cmd="sqlite3 -init ${KW_DB_DIR}/pre_cmd.sql -cmd \"${pre_cmd}\" \"${db_path}\"
o =—batch \"${query}\""
cmd_manager "$flag" "$cmd"




19

3.1 | CRUD BANCO DE DADOS

Programa 3.2 snippet uso fungéao select_from_antiga.

is_on_database="$(select_from "kernel_config WHERE name IS '${config_name}'" '' "'
< L) "$f1ag")”

Além disso, especificamente nos comandos de sele¢do (Programa 3.3), também foi
implementado um parametro adicional para permitir o uso da clausula ordered_by, que
possibilita especificar uma ordenacéo para os dados retornados com base em um atributo
comparavel entre eles. O resultado dessa transicdo para o uso de pardmetros pode ser
observado no Programa 3.4.

Programa 3.3 cé6digo select_from novo.

function select_from()

{
local table="s1"
local columns="§{2¢="%"}"
local pre_cmd="$3"
local _condition_array="s4"
local order_by=${5:-"''}
local flag=${6:-'"SILENT'}
local db="${7:-"S$SDB_NAME"}"
local db_folder="${8:="S$SKW_DATA_DIR"}"
local where_clause
local db_path
local query

db_path="$(join_path "sdb_folder" "sdb")"

if [[ ! -f "$db_path" ]]; then
complain 'Database does not exist'
return 2

fi

if [[ -z "$table" ]]; then
complain 'Empty table.'
return 22 # EINVAL

i

if [[ -n "$_condition_array" ]]; then
where_clause="$(generate_where_clause "$_condition_array")"
fi

query="SELECT ${columns} FROM ${table} ${where_clause} ;"

if [[ -n "${order_by}" ]1]; then
query="${query::-2} ORDER BY ${order_by} ;"
fi

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" -cmd \"${pre_cmd}\" \"${db_path}\"
» —batch \"$query\""
cmd_manager "$flag" "$cmd"




20

3 | CONTRIBUICOES PARA O KW

Programa 3.4 snippet uso funcio select_from_nova.

condition_array=(['name']="${config_name}")
is_on_database="$(select_from 'kernel_config' '' '' 'condition_array' '' "$flag")"

Por fim, essa alteracdo também permitiu que comparacdes de desigualdades fossem
feitas de forma mais abrangente e ordenada, visto que na funcido de remocao antiga
(Programa 3.5) apenas operacdes de comparagao eram possiveis e que na funcéo de seleciao
apenas com o codigo SQL explicito. Para modernizar esse fluxo, implementou-se a nova
funcao de remocéao (Programa 3.6) baseada na logica de geracdo automatica de clausulas
do Programa 3.7.

Programa 3.5 codigo remove_from antigo.

function remove_from()

{

db_path="$(join_path "${db_folder}" "$db")"

if [[ ! -f "${db_path}" ]1]; then

complain 'Database does not exist'

return 2

fi

if [[ -z "S$table" || -z "${!_condition_array[*x]}" ]]; then

complain 'Empty table or condition array.'

return 22 # EINVAL

fi

for column 1in "${!_condition_array[@]}"; do

where_clause+="$column="'${_condition_array["${column}"]}"'"

where_clause+=' AND '

done

# Remove trailing ' AND '

where_clause="${where_clause::-5}"

cmd="sqglite3 -init "${KW_DB_DIR}/pre_cmd.sql" \"${db_path}\" -batch \"DELETE
- FROM ${table} WHERE ${where_clause};\""

cmd_manager "$flag" "$cmd"

}

Programa 3.6 codigo remove_from novo.

function remove_from()

{

local table="$1"

local _condition_array="$2"

local db="${3:-"${DB_NAME}"}"

local db_folder="${4:-"${KW_DATA_DIR}"}"
local flag=${5:-"'SILENT'}

local db_path

cont —



3.1 | CRUD BANCO DE DADOS

—> cont
db_path="$(join_path "${db_folder}" "$db")"
if [[ ! -f "${db_path}" ]]; then

complain 'Database does not exist'

return 2
fi

if [[ -z "$table" || -z "$_condition_array" ]]; then
complain 'Empty table or condition array.'
return 22 # EINVAL

fi

where_clause="$(generate_where_clause "$_condition_array")"
query="DELETE FROM ${table} ${where_clause} ;"

cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" \"${db_path}\" -batch \"Squery\""
cmd_manager "$flag" "$cmd"

Programa 3.7 codigo generate_where_clause utilizado nas novas funcoes para gerar a
clausula WHERE SQL a partir dos parametros passados.

function generate_where_clause()
{
local -n condition_array_ref="$1"
local clause
local relational_op='="
local attribute
local where_clause="WHERE "
local value

for clause 1in "${!condition_array_ref[@]}"; do
attribute="$(cut --delimiter=',' --fields=1 <<< "$clause")"
value="${condition_array_ref["${clause}"]}"

if [[ "$clause" =~ "," ]]; then
relational_op=$(cut --delimiter=',"' —-fields=2 <<< "$clause")
fi

where_clause+="${attribute}${relational_op}'${value}'"
where_clause+=' AND '
done

printf '%s' "${where_clause::-5}" # Remove trailing ' AND '

}

Além disso, outra implementacao desenvolvida nessa etapa, foi a implementacdo do
novo método update_into (Programa 3.8), que permitia a alteragdo pontual de algum
atributo dentro de uma entidade do banco de dados e da funcéo generate_set_clause (Pro-
grama 3.9), utilizada para gerar a clausula set do SQL, que define quais conjuntos de
atributos serdo alterados e quais os novos valores para esses atributos. Essa implementacéo
também faz uso da funcgio generate_where_clause, uma vez que na maioria das alteragdes

21



22

3 | CONTRIBUICOES PARA O KW

se faz necessario especificar qual entidade/conjunto de entidades recebera as alteracdes,
como exemplificado no Programa 3.10.

Programa 3.8 codigo update_into.

function update_into()

{

db_path="$(join_path "sdb_folder" "sdb")"

if [[ ! -f "$db_path" ]]; then
complain 'Database does not exist'
return 2

fi

if [[ -z "$table" ]]; then
complain 'Empty table.'
return 22 # EINVAL

fi

if [[ -z "$_condition_array" || -z "$_updates_array" ]]; then
complain 'Empty condition or updates array.'
return 22 #EINVAL

fi

where_clause="$(generate_where_clause "$_condition_array")"
set_clause="$(generate_set_clause "$_updates_array")"

query="UPDATE ${table} SET ${set_clause} ${where_clause} ;"
cmd="sqlite3 -init "${KW_DB_DIR}/pre_cmd.sql" -cmd \"${pre_cmd}\" \"${db_path}\"

~ —batch \"$query\""
cmd_manager "$flag" "$cmd"

Programa 3.9 codigo generate_set_clause utilizado para permitir especificar quais atribu-
tos serdo alterados e quais serdo seus novos valores.

function generate_set_clause()

{

local -n condition_array_ref="3$1"
local attribute

local set_clause

local value

for attribute in "${!condition_array_ref[@]}"; do
value="${condition_array_ref["${attribute}"]}"
set_clause+="${attribute} = '${value}'"
set_clause+="', '

done

printf '%s' "${set_clause::-2}" # Remove trailing ', '




3.2 | KW MANAGE CONTACTS

Programa 3.10 snippet uso funcdo update_into.

# update one row using one unique attribute
condition_array=(['name']="namel9")

updates_array=(['attributel']="attl.2' ['attribute2']="att2.2' ['rank']='10")
update_into 'fake_table' 'updates_array' '' 'condition_array'

A padronizacdo dessas operacdes de CRUD e o isolamento das consultas SQL em
fungdes parametrizadas foram fundamentais para garantir a escalabilidade do sistema. Esta
base técnica de persisténcia de dados permitiu o desenvolvimento de funcionalidades que
exigem um gerenciamento mais complexo de informagdes, como a automagio de contatos
e grupos, que sera detalhada na secdo seguinte.

3.2 KW Manage Contacts

No fluxo atual, a submissdo de patches pode ser realizada por meio da ferramenta kw
send-patch. Este comando recebe como parametros a lista de commits a serem enviados, os
usuarios responsaveis — geralmente mantenedores — e as listas de discussdo do subsistema
pertinente que devem ser notificadas da contribuigio. A partir desses dados, o kw gera as
modificacdes necessarias e utiliza internamente o git send-email para a transmissdo das
mensagens aos destinatarios. Essa abordagem reflete a fungdo do kw como um hub, que
agrega e simplifica o uso de ferramentas ja consolidadas na comunidade, automatizando
etapas manuais e aprimorando o fluxo de submissao do desenvolvedor.

Ao lidar com e-mails, é comum que existam grupos de destinatarios recorrentes durante
a submissdo de patches. Atualmente, o kw disponibiliza a funcionalidade kw maintainers
que, ao utilizar internamente o script get_maintainers.pl do kernel, lista os mantenedores
responsaveis pelos subsistemas alterados. Embora essa ferramenta facilite a identificacdo
dos responsaveis oficiais, ela ndo contempla grupos nao oficiais ou externos, como equipes
de trabalho e colaboradores de projetos especificos. Diante disso, surgiu a necessidade
de uma ferramenta integrada ao fluxo do kw para o gerenciamento de grupos de e-mail,
visando garantir maior praticidade e consisténcia na comunicagao do desenvolvedor.

3.2.1 Objetivos

Assim, o objetivo principal foi o de criar um sistema que permitisse gerenciar grupos
de e-mail de forma centralizada, com armazenamento persistente no banco de dados do kw
e acesso através de interface em linha de comando (CLI). Permitindo, através disso, que o
usuario pudesse cadastrar contatos, organizar esses contatos em grupos e, posteriormente,
incluir automaticamente tais grupos ao enviar patches utilizando o kw send-patch.

3.2.2 Arquitetura

A arquitetura da solucao foi planejada de forma modular. O banco de dados é respon-
savel por armazenar contatos individuais (email_contact), os grupos (email_group) e suas
associacoes (email_contact_group), enquanto a interface de linha de comando fornece os
comandos necessarios para manipulagio dessas informacdes. O modelo de dados contempla



3 | CONTRIBUICOES PARA O KW

as entidades contato, grupo e a relacdo entre elas, garantindo flexibilidade para gerenciar
multiplos contextos e equipes (Figura 3.1).

email_contact w

email_group
- id: int {PK}) email_contact Jroupw
id: int {PK}
name: String »| contact_id: int {FK} <
name: String
email: String group_id: int {FK}
_ created_at: DateTime

created_at: DateTime

| S e

Figura 3.1: Diagrama Entidade-Relacionamento do kw manage-contacts

Programa 3.11 modelagem sql kw manage-contacts

-- Table containing the kw email groups infos
CREATE TABLE IF NOT EXISTS "email_group" (
"jd" INTEGER NOT NULL UNIQUE,
"name" VARCHAR(50) NOT NULL UNIQUE,
"created_at" TEXT DEFAULT (date('now', 'localtime')),
PRIMARY KEY("id")

)

-- Table containing the kw email contacts infos
CREATE TABLE IF NOT EXISTS "email_contact" (
"id" INTEGER NOT NULL UNIQUE,
"name" VARCHAR(100) NOT NULL,
"email" VARCHAR(100) NOT NULL UNIQUE,
"created_at" TEXT DEFAULT (date('now', 'localtime')),
PRIMARY KEY("id")

)

-- Table containing the association between a kw email group and it's contacts
CREATE TABLE IF NOT EXISTS "email_contact_group" (
"contact_id" INTEGER,
"group_id" INTEGER,
PRIMARY KEY ("contact_id", "group_id"),
FOREIGN KEY ("contact_id") REFERENCES "email_contact"("id") ON DELETE CASCADE,
FOREIGN KEY ("group_id") REFERENCES "email_group"("id") ON DELETE CASCADE

)5

CREATE TRIGGER IF NOT EXISTS '"delete_contact_if_no_group"
AFTER DELETE ON "email_contact_group"
FOR EACH ROW
WHEN (SELECT COUNT(*) FROM "email_contact_group" WHERE "contact_id" =
< OLD.contact_id) = 0
BEGIN
DELETE FROM "email_contact" WHERE "id" = OLD.contact_id;
END;




3.2 | KW MANAGE CONTACTS

25

3.2.3 Funcionalidades

A interacdo com a ferramenta ocorre exclusivamente pelo terminal, de forma a manter
compatibilidade com o fluxo tradicional do kw. Foram definidos comandos claros e diretos,
permitindo que o usuario visualize grupos existentes, adicione novos contatos, associe-os
a diferentes grupos e utilize esses grupos diretamente no envio de e-mails.

As principais funcionalidades implementadas sao referenciadas no Programa 3.12.

Programa 3.12 comandos kw manage contacts.

'"kw manage-contacts:' \

' manage-contacts

' manage-contacts

' manage-contacts
- group' \

' manage-contacts

(-c | --group-create) [<name>] - create new group' \
(-r | --group-remove) [<name>] - remove existing group' \
--group-rename [<old_name>:<new_name>] - rename existent

--group-add "[<group_name>]:[<contactl_name>]

o <[<contactl_email>]>, [<contact2_name>] <[<contact2_email>]>, ..." - add
- contact to existent group' \

' manage-contacts
- remove contact
' manage-contacts
» specific group

--group-remove-email "[<group_name>]:[<contact_name>]" -
from existent group' \

--group-show=[<group_name>] - show existent groups or
contacts'

Criacao de Grupos

A funcionalidade de criacdo de grupos, executada por meio do comando kw manage-
contacts group-create, permite a organizacio estruturada de contatos para facilitar
as submissdes. O comando recebe o nome do novo grupo, que é submetido a algumas de
validacoes de integridade antes de sua persisténcia no banco de dados. Essas verificacoes
asseguram que o identificador proposto seja nico, ndo contenha caracteres especiais e
respeite o limite de 50 caracteres. Uma vez atendidos os requisitos, o sistema realiza a
inser¢do do registro (Programa 3.13).

Programa 3.13 create_email_group e create_group.

function create_email_group()

{

local group_name="s$1"

local values

validate_group_name "S$group_name"

if [[ "$?" -ne 0 ]];

return 22 # EINVAL

fi

then

check_existent_group "$group_name"

if [["$2" -ne 0 1];

then

warning 'This group already exists'

cont —



3 | CONTRIBUICOES PARA O KW

—> cont

return 22 # EINVAL
fi

create_group "$group_name"

if [[ "$?" -ne 0 ]]; then
return 22 # EINVAL

fi
return 0
}
function create_group()
{
local group_name="$1"
local sql_operation_result
values="$(format_values_db 1 "$group_name")"
sql_operation_result=$(insert_into "$DATABASE_TABLE_GROUP" '(name)' "$values" ''
- 'VERBOSE')
ret="$2"
if [[ "Sret" -eq 2 || "$ret" -eq 61 ]]; then
complain "$sql_operation_result"
return 22 # EINVAL
elif [[ "$ret" -ne 0 ]]; then
complain "(SLINENO):" S$'Error while inserting group into the database with
— command:\n' "${sql_operation_result}"
return 22 # EINVAL
fi
return 0
}

Exclusao de Grupos

A funcionalidade de exclusio, invocada pelo comando kw manage-contacts group-
remove, permite a remocao definitiva de uma categoria de contatos e de todas as suas
referéncias no sistema. A operagio exige a validacao da existéncia prévia do grupo no
banco de dados e utiliza a clausula CASCADE na tabela de associagdo para garantir a
consisténcia dos dados (Programa 3.11). Este mecanismo extingue automaticamente todos
os vinculos do grupo, enquanto uma rotina adicional remove contatos que permanegam
sem qualquer outra associagdo (Programa 3.14).

Programa 3.14 remove_email_group e remove_group.

function remove_email_group()

{

local group_name="3$1"

cont —



3.2 | KW MANAGE CONTACTS

—> cont

check_existent_group "$group_name"

if [[ "$?" -eq 0 ]]; then
warning 'Error, this group does not exist'
return 22 #EINVAL

fi

remove_group "S$group_name"

if [[ "$?" -ne 0 ]]; then
return 22 #EINVAL
fi

return 0

function remove_group()

{
local group_name="s$1"
local sql_operation_result

condition_array=(['name']="${group_name}'")

sql_operation_result=$(remove_from "$DATABASE_TABLE_GROUP" 'condition_array' '' '!'
- '"VERBOSE')
ret="$2"

if [[ "Sret" -eq 2 || "$ret" -eq 61 ]]; then
complain "$sql_operation_result"
return 22 # EINVAL
elif [[ "sret" -ne 0 ]]; then
complain $'Error while removing group from the database with
- command:\n'"${sql_operation_result}"
return 22 # EINVAL
fi

return 0

Renomeacao de Grupos

A funcionalidade de renomeacéo, acessada através do comando kw manage-contacts
group-rename, permite a alteracao de identificadores existentes sem a necessidade de
excluir e recriar registros. A operacao recebe como parametros o nome atual e o novo rétulo,
submetendo este ultimo ao mesmo processo de validacdo do ciclo de criagdo (limite de
caracteres e auséncia de simbolos especiais). Essa revalidacdo assegura que a consisténcia
da base de dados seja preservada, mantendo integras as associa¢des de contatos vinculadas
ao grupo (Programa 3.15).

27



28

3 | CONTRIBUICOES PARA O KW

Programa 3.15 rename_email_group e rename_group.

function rename_email_group()

{

local old_name="s1"
local new_name="$2"
local group_id

if [[ -z "$old_name" ]]; then
complain 'Error, group name 1is empty'
return 61 # ENODATA

fi

check_existent_group "$old_name"

if [[ "$?" -eq © ]]; then

warning 'This group does not exist so it can not be renamed'

return 22 # EINVAL
fi

validate_group_name "Snew_name"
if [[ "$?" -ne 0 ]]; then
return 22 # EINVAL
fi
rename_group "$old_name" "$new_name"
if [[ "$?" -ne 0 ]]; then
return 22 # EINVAL

fi

return 0

function rename_group()

{

local old_name="$1"

local new_name='"s$2"

local sql_operation_result
local ret

condition_array=(['name']="${old_name}")
updates_array=(["'name']="${new_name}")

sql_operation_result=$(update_into "$DATABASE_TABLE_GROUP"
- 'condition_array' 'VERBOSE')
ret="s2"

if [[ "Sret" -eq 2 || "$ret" -eq 61 ]]; then
complain "$sql_operation_result"
return 22 # EINVAL

elif [[ "$ret" -ne 0 ]]; then

'updates_array' "'

cont —



3.2 | KW MANAGE CONTACTS

—> cont
complain "(SLINENO):" $'Error while removing group from the database with
— command:\n'"${sql_operation_result}"
return 22 # EINVAL
fi

return 0

Adicionar contatos a Grupos de Email

A funcionalidade de associacdo de contatos, executada pelo comando kw group-add-
contact, permite o gerenciamento e a expansao de grupos por meio da insercdo em lote. A
operacao recebe o nome do grupo alvo e uma lista estruturada no formato NOME <EMAIL>.
O sistema valida a existéncia do grupo, segmenta a entrada e executa verificacdes de
integridade sintatica em cada endereco de e-mail. Uma vez validados, os contatos sdo
persistidos e vinculados ao grupo correspondente (Programa 3.16).

Programa 3.16 add_email_contacts e add_contact_group

function add_email_contacts()
{
if [[ -z "$contacts_list" ]]; then
complain 'The contacts list is empty'
return 61 # ENODATA
fi

if [[ -z "$group_name" ]]; then
complain 'The group name is empty'
return 61 # ENODATA

fi

check_existent_group "$group_name"
group_id="$?"

if [[ "S$group_id" -eq 0 ]]; then
complain 'Error, ubable to add contacts to unexistent group'
return 22 # EINVAL

fi

split_contact_infos "$contacts_list" _contacts_array
if [[ "$?" -ne 0 ]]; then
return 22 # EINVAL
fi
add_contacts _contacts_array
if [[ "$?" -ne 0 ]]; then
return 22 # EINVAL

fi

cont —

29



30

—>

cont

add_contact_group _contacts_array "$group_id"

if [[

"$?" -ne 0 ]]; then

return 22 # EINVAL

fi

return 0

function add_contact_group()

{

Tlocal
local
local
Tlocal
local
Tlocal
local
local

-n contacts_array="$1"
group_id="$2"

values

email

contact_-id
ctt_group_association
sql_operation_result
ret

for email 1in "${!contacts_array[@]}"; do
condition_array=(['email']="${email}")

contact_id="$(select_from "SDATABASE_TABLE_CONTACT"
values="$(format_values_db 2 "$contact_id" "S$Sgroup_id")"

3 | CONTRIBUICOES PARA O KW

' 'condition_array')"

condition_array=(['contact_id']="${contact_id}" ['group_id']="${group_id}")
ctt_group_association="$(select_from "$DATABASE_TABLE_CONTACT_GROUP" 'contact_id,

- group_id' '' 'condition_array')"

if [[ -n "$ctt_group_association" ]]; then
continue

fi

sql_operation_result=$(insert_into "$DATABASE_TABLE_CONTACT_GROUP" '(contact_1id,

<

ret=

if [[ "Sret" -eq 2 || "$ret" -eq 61 ]]; then

group_id)' "$values" '' '"VERBOSE')
I|$?||

complain "$sql_operation_result"
return 22 # EINVAL

elif [[ "$ret" -ne 0 ]]; then
complain "($LINENO):" S$'Error while trying to insert contact group into the

database with the command:\n'"${sql_operation_result}"

return 22 # EINVAL

o

fi

done

return 0




3.2 | KW MANAGE CONTACTS

Exibir grupos

A funcionalidade de consulta, operada pelo comando kw manage-contacts group-
show, permite visualizar as informacdes armazenadas no banco de dados de duas maneiras.
Quando um identificador de grupo é fornecido como parametro, o sistema valida sua
existéncia e lista todos os contatos vinculados (Figura 3.2). Caso o comando seja invocado
sem parametros, o sistema apresenta um resumo de todos os grupos cadastrados (Figura 3.3).
A logica de processamento e formatacao da saida de dados detalhada pode ser observada
no Programa 3.17.

Programa 3.17 show email groups, print_groups_infos e print_contacts_infos.

function show_email_groups()
{
local group_name="s$1"
local columns="s2"
local groups_info
local contacts_info
local contact_1id
declare -a contacts_array
declare -a groups_array

if [[ -n "$group_name" ]]; then
check_existent_group "S$group_name"

if [[ "$?" -eq 0 ]]; then
complain 'Error unexistent group'
return 22 #EINVAL

fi

contacts_info="$(get_groups_contacts_infos "$group_name" 'x')"
IFS=',' read -ra contacts_array <<< "$contacts_info"
print_contact_infos "$group_name" 'contacts_array' "$columns"
return

fi

groups_info="$(select_from "$DATABASE_TABLE_GROUP")"
readarray -t groups_array <<< "$groups_info"
print_groups_infos 'groups_array' "$columns"

function print_contact_infos()
{
local group_name="3$1"
local -n _contacts_array="3$2"
local columns="$3"
local group_name_width=${#group_name}
local trim_width=$(((columns - group_name_width) / 2))
local remaining_width=$((columns - group_name_width - trim_width))
local id_width=8
local name_width=50

cont —

31



32

3 | CONTRIBUICOES PARA O KW

—> cont

local associate_groups_width=20

local created_at_width=12

local email_width=$((columns - id_width - name_width - associate_groups_width -
- created_at_width - 8))

if [[ -z $columns ]]; then
columns="$(tput cols)"
fi

printf "%xs%s%xs\n" "$trim_width" "" "$Sgroup_name" "S$remaining_width" "" | tr '

o T

printf "%-${id_width}s|%-${name_width}s|%-${email_width}s|" \
"%-${associate_groups_width}s|%-${created_at_width}s\n" \
"ID" "Name" "Email" "Associated Groups" "Created at"

printf "%-${columns}s\n" | tr ' ' '-!

for contact in "${_contacts_array[@]}"; do
IFS='|"' read -r 1id name email created_at <<< "$contact"
condition_array=(['contact_id']="$id")
associate_groups_num="$(select_from "$DATABASE_TABLE_CONTACT_GROUP" 'COUNT(*)"'
- ''" 'condition_array')"
printf "%-${id_width}s|%-${name_width}s|%-${email_width}s|" \
"%-${associate_groups_width}s|%-${created_at_width}s\n" \
"$id" "$name" "Semail" "$associate_groups_num'" "Screated_at"

done
printf "%-${columns}s\n" | tr ' ' '-!

function print_groups_infos()

{

local -n groups_info="s1"

local columns="$2"

local id_width=8

local contact_num_width=25

local created_at_width=20

local name_width=$(("$columns" - id_width - contact_num_width - created_at_width -

> 6))

if [[ -z $columns ]]; then
columns="$(tput cols)"
fi
printf
o "%-${id_width}s|%-${name_width}s|%-${contact_num_width}s|%-${created_at_width}s\n"
— "ID" "Name" "Contacts" "Created at"

printf "%-${columns}s\n" | tr ' ' '-'

for group 1in "${!groups_info[@]}"; do

cont —



33

3.2 | KW MANAGE CONTACTS

—> cont

IFS='|"' read -r id name created_at <<< "${groups_info[$group]}"
condition_array=(['group_id']="$1id")

contact_num="$(select_from "S$SDATABASE_TABLE_CONTACT_GROUP'" '"COUNT(*)' ''
- 'condition_array')"

printf
o "%-${id_width}s|%-${name_width}s|%-${contact_num_width}s
o "$qd" "S$name" "$Scontact_num'" "Screated_at"

done

%-${created_at_width}s\n"

printf "%-${columns}s\n" | tr ' ' '-'

:~$ kw manage-contacts --group-show=Faculdade

ated Groups |Created at

| joaonerm 1 |2025-89-16

:-$ kw manage-contacts --group-show
| Name |Created at

| Trabalho
| Faculdade

Figura 3.3: Exemplo do comando “group_show” sem um grupo especificado.

3.2.4 Enviar patches para grupos

A integracdo de grupos de e-mail ao fluxo de submissdes é viabilizada pelos novos
parametros -to-groups e -~cc-groups, incorporadas a feature kw send-patch. Essa funcio-
nalidade permite ao usuario enviar patches a grupos de contatos pré-definidos, eliminando
a necessidade de insercdo manual de multiplos enderecos, principalmente em submissdes
recorrentes.

Para que isso seja possivel, o send-patch recebe o nome dos grupos em listas contendo
identificadores de grupos separados por virgulas. Internamente, o sistema processa essa
entrada realizando consultas ao banco de dados para realizar a consulta dos nomes de
grupos e encontrar os enderecgos de e-mail validos, que sdo entdo injetados nos campos
de destinatario (7o) ou de copia (Cc) da mensagem (Programa 3.18). Os novos parametros
podem ser encontrados em: Programas 3.19.

Programa 3.18 Funcio send_patch_main com métodos —to-groups e cc-groups.

function send_patch_main()

{
local flag
flag=${flag:-"'SILENT'}
if [[ "$1" =~ -h|--help ]]; then

cont —



34

3 | CONTRIBUICOES PARA O KW

—> cont

send_patch_help "$1"
@e -89,7 +90,9 @@

local flag="$1"
local opts="${send_patch_config[send_opts]}"
local to_recipients="${options_values['TO']}"
local to_groups_recipients="${options_values['TO_GROUPS']}"
local cc_recipients="${options_values['CC']}"
local cc_groups_recipients="${options_values['CC_GROUPS']}"
local dryrun="${options_values['SIMULATE']}"
local commit_range="${options_values['COMMIT_RANGE']}"
local version="${options_values['PATCH_VERSION']}"
local extra_opts="${options_values['PASS_OPTION_TO_SEND_EMAIL']}"
local private="${options_values['PRIVATE']}"
local rfc="${options_values['RFC']}"
local kernel_root
local patch_count=0
local cmd='git send-email'
flag=${flags-'SILENT'}

[[ -n "$dryrun" ]] && cmd+=" $dryrun"

if [[ -n "S$to_groups_recipients" ]]; then

validate_email_group_list "$to_groups_recipients" || exit_msg 'Please review

- your ~--to-groups” list.'

if [[ -n "S$to_recipients" ]]; then

to_recipients+="',"'

fi

to_recipients+=$(get_groups_contacts_infos "$to_groups_recipients" 'email')
fi

if [[ -n "$cc_groups_recipients" ]]; then

validate_email_group_list "$cc_groups_recipients" || exit_msg 'Please review

- your ~--cc-groups  list.'

if [[ -n "$cc_recipients" ]]; then

cc_recipients+="',"

fi

cc_recipients+=$(get_groups_contacts_infos "$cc_groups_recipients" 'email')
fi

if [[ -n "$to_recipients" ]]; then

validate_email_list "$to_recipients" || exit_msg 'Please review your ~--to~
o list.'
cmd+=" --to=\"$to_recipients\""

fi

if [[ -n "$cc_recipients" ]]; then
validate_email_list "$cc_recipients" || exit_msg 'Please review your ~--cc’
- Llist.'
cmd+=" --cc=\"$cc_recipients\""

fi

# Don't generate a cover letter when sending only one patch
patch_count="$(pre_generate_patches "$commit_range" "$version")"
if [[ "Spatch_count" -eq 1 ]]; then

cont —



3.3 | KW PATCH TRACK

—> cont
opts="$(sed 's/--cover-letter//g' <<< "$Sopts")"
fi
kernel_root="$(find_kernel_root "$PWD")"
# 1f inside a kernel repo use get_maintainer to populate recipients
if [[ -z "$private" && -n "$kernel_root" ]]; then
generate_kernel_recipients "$kernel_root"

cmd+=" --to-cmd="'bash ${KW_PLUGINS_DIR}/kw_mail/to_cc_cmd.sh ${KW_CACHE_DIR}
- to'"
cmd+=" --cc-cmd="bash ${KW_PLUGINS_DIR}/kw_mail/to_cc_cmd.sh ${KW_CACHE_DIR}
- cc'"

fi

@@ -931,27 +950,27 @@
[[ "$1" =~ A--$ ] && dash_dash=1
# The added quotes ensure arguments are correctly separated
options="$options \"s$1\""

shift
done
if [[ -n "$commit_count" ]]; then
# add "--" if not present
[[ "$dash_dash" == 0 ]] && options="Soptions --"
options="S$Soptions $commit_count"
fi
printf '%s' "$options"

Programa 3.19 op¢des do comando —send do kw send-patch contendo o to-groups e o
cc-groups.

| *kw send-patchx (-s | \--send) [\--simulate] [\--private] [\--rfc]
[\--to='<recipient>,...'] [\--cc='<recipient>,..."']
[\--to-groups="'<recipient>,..."'] [\--cc-groups="'<recipient>,..."']
[<rev-range>...] [-v<version>] [\-- <extra-args>...]

3.2.5 Resultados

Entre os beneficios da abordagem adotada estdo a maior praticidade no gerenciamento
de destinatarios, a redu¢édo de erros manuais na inclusio de e-mails e a possibilidade de
reutilizagao de grupos em diferentes contextos. Isso se traduz em um processo mais agil
e confiavel no envio de patches.

Apesar dos avancos alcangados, algumas limitacdes ainda podem ser apontadas. A
ferramenta oferece suporte apenas via CLI, ndo possuindo interface para o usuario via
terminal, que poderia ser desejavel, principalmente, para visualizar informagoes dos grupos
e contatos de uma maneira mais organizada.

3.3 KW Patch track

Atualmente, embora seja possivel submeter patches através do kw, ainda néo existe

um mecanismo eficaz para acompanhar e gerenciar o ciclo de vida dessas submissoes.

35



36

3 | CONTRIBUICOES PARA O KW

Conforme novas versdes de um mesmo patch sao enviadas e as revisdes se acumulam,
torna-se cada vez mais dificil manter o controle sobre o historico, as respostas recebidas e
o estado atual de cada alteracdo. Esta lacuna é significativa, pois obriga o desenvolvedor
a realizar esse acompanhamento de forma externa e manual, o que fragmenta o fluxo
de trabalho e aumenta a carga cognitiva. Diante dessa limitacdo, surgiu a necessidade
de uma funcionalidade capaz de registrar, rastrear e atualizar automaticamente o status
dos patches submetidos, centralizando o gerenciamento do ciclo de vida diretamente no
ecossistema do kw.

Um video demonstrativo dessa ferramenta pode ser encontrado em: https://jgbsouza.
github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm

3.3.1 Objetivos

Assim, o objetivo principal do Patch Track é permitir que o usuario acompanhe de forma
automatizada o progresso de suas contribui¢des, desde o envio inicial até a integracdo no
repositorio, reduzindo o esforco manual e promovendo maior clareza sobre o processo
de revisdo.

Além disso, o sistema busca oferecer uma base solida para extensdes futuras, como
integracdo com repositorios oficiais e coleta de métricas sobre o fluxo de contribuigao,
incluindo tempo médio de resposta, aprovagao e integracdo de patches. Essa capacidade
de extracdo de dados é fundamental para consolidar o kw como uma ferramenta de
suporte a pesquisa cientifica, permitindo o estudo empirico e sistematico do modelo de
desenvolvimento do kernel Linux e o entendimento aprofundado de suas dinamicas de
colaboracdo em larga escala.

3.3.2 Arquitetura

A arquitetura do Patch Track foi projetada de forma modular e baseada em um modelo
relacional de entidades interligadas. Todas as informacdes sdo armazenadas em banco de
dados, garantindo rastreabilidade e consisténcia das submissdes.

A entidade central, patch, armazena informacdes como o autor, o message-id da sub-
missao, a versdo e o status atual do patch. O campo outdated indica quando uma versao
mais recente substitui outra, preservando o historico completo das alteracoes.

A entidade contribution agrupa logicamente diferentes versdes de um mesmo trabalho,
mantendo informacdes sobre a data da ultima interacdo e o repositdrio de destino. Esse
repositorio é representado pela entidade repository, que contém dados como nome, URL e
branch associada na qual a contribuigio deve ser integrada assim que aprovada, além dos
mantenedores vinculados a esse repositoério, permitindo identificar revisores e correlacionar
respostas relevantes nas threads de e-mail.

O rastreamento dos envios é realizado pela tabela patch_submission, que registra o
identificador da mensagem, o remetente e o vinculo entre cada envio e o patch correspon-
dente. O sistema também oferece suporte a tags, utilizadas como marcadores seméanticos
para facilitar a filtragem, a categorizacdo e a exibi¢do das informacdes.


https://jgbsouza.github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm
https://jgbsouza.github.io/Mac0499---TCC/demonstracao_kw_patch_track.webm

3.3 | KW PATCH TRACK

Essa estrutura de dados estabelece uma base robusta para o controle do ciclo de vida
dos patches e possibilita futuras expansoes, como integracdo com servicos externos de
revisao e automacdo de métricas analiticas (Figura 3.4).

( W 0 o )
email_contact patch patch_submission

id: int {PK} id: int {PK} < patch_id: int {FK}

name: String title: String submission_id: int {FK} —
email: String author_email: String message_id: String
created_at: DateTime status: enum created_at: DateTime

commit_hash: String

submission
created_at: DateTime

id: int {PK} -

— contribution_id: int {FK}
— contribution_id: int {FK}

repository_maintainer send._by: Stiing

id: int {PK}

created_at: DateTime
id_contact: int {FK}

id_repository: int {Fi<
P 1y Int {FKY ( contribution )

( contribution_tag_
L id: int {PK} e—| relation
—— contribution_id: int {FK}

title: String

- tag_id: int {FK}
repository created_at: DateTime \. J

id: int {PK}

Fy

last_interaction_at: DateTime

created_at: DateTime status: enum contribution_tag

arigem_url; String author_email: String id: int {PK}

name: string Cepositow_id: int {FK} ) name: 5string

Figura 3.4: Diagrama Entidade-Relacionamento do Kw patch_track

3.3.3 Funcionalidades

O kw patch_track oferece um conjunto de funcionalidades voltadas a automatizagio e ao
gerenciamento das submissoes de patches. Todas as intera¢des ocorrem de forma integrada
ao fluxo do kw, mantendo a compatibilidade com a ferramenta principal de envio.

As principais funcionalidades implementadas sao referenciadas no Programa 3.20.

Programa 3.20 comandos kw patch-track.

"kw patch-track:' \
' patch-track (--show-patches) [[--from <YYYY-MM-DD>] | [--after <YYYY-MM-DD>]
- [--before <YYYY-MM-DD>]] - Show patches dashboard in chronological order ' \

' patch-track (-d | --show-contributions) - Show all contributions ' \

' patch-track (--id <num>) [-s <status> | --set-status <status>] - Set a patch
- status '\

' patch-track (-u | --update) - Update patch statuses using heuristics ' \

' patch-track (-c | --contribution-id <id>) (--set-repository <name:url>) -

- Associate a repository to a contribution ' \

cont —



38

3 | CONTRIBUICOES PARA O KW

—> cont
' patch-track (-r | --repository-id <id>) (-m | --set-maintainer <name:email>) -
- Associate a maintainer to a repository ' \
' patch-track (-c | --contribution-id <id>) (-o | --open-contribution) - Open

o contribution email thread in mutt '

Registro e Rastreamento das submissoes e contribuicoes

Durante a submissdo dos patches com a ferramenta kw send_patch, o sistema permite
identificar ou criar uma contribuicdo por meio do terminal interativo, que lista as contri-
bui¢des ativas do usuéario para reutilizac¢do ou criacdo de uma nova (Figura 3.5). Apos a
submissio, cada patch enviado é cadastrado no banco de dados com informacdes como
versao, titulo, autor, data de criacdo e commit_hash.

Quando um patch corresponde a uma versio ja existente — isto é, quando titulo,
autor, commit_hash e contribuicdo coincidem — apenas a nova submissdo é registrada,
evitando duplicagdo de versdes. Em seguida, é criada uma nova submission, agregando
todas as submissdes individuais feitas naquela execugao do kw send-patch e vinculando-as
a contribuigdo correspondente.

- S kw send-patch --send --to="joaosouzazal2@usp.br"
Select one of the contributions bellow or write a new title:

(1 - previous_contribution_title
2 - monografia_demo_test):

Figura 3.5: Identificando a contribui¢ido Kw patch_track

Para extrair e salvar as informacgdes dos patches submetidos, a ferramenta se utiliza da
técnica de raspagem de dados de dois tipos de arquivos gerados durante a etapa de envio. O
primeiro desses arquivos (Figura 3.6), gerado temporariamente para esse fluxo, é resultado
do redirecionamento da saida do comando git send-email, utilizado pelo send-patch para
publicacdo dos patches. Desse arquivo entdo o kw patch-track extrai grande parte das
informacdes, como o titulo, email do autor do commit/patch, email do remetente (pode néo
ser 0 mesmo usado para criar os commits), os emails dos destinatarios, data e horario de
submissao e por fim o message-id. Adicionalmente, para ter acesso aos hashes dos commits,
avalia-se também os arquivos de patches (Figura 3.7) preliminares, gerados pelo kw send-
patch para pré-processamento interno. Ainda que parte dos dados extraidos do resultado
da submissdo estejam disponiveis também no arquivo do patch, o fato de que parte das
informacdes como titulos, autor e destinatarios podem ser reescrita durante a submissao
somado ao fato de que esses arquivos contém textos adicionais com o conteudo do patch,
poderiam levar a erros de julgamento ou informacdes imprecisas na hora da extracéo.

Integracao com o mutt

O kw patch_track oferece integracio com o cliente de e-mail em terminal mutt,! um
cliente amplamente utilizado pela capacidade de exibir emails diretamente no terminal. O
objetivo dessa integracdo é permitir que o usuario visualize, de forma préatica, os e-mails

! https://mutt.org


https://mutt.org

3.3 | KW PATCH TRACK

/tmp/KMNHKe3S5p/0001-feat-add-file-with-template-configs-for-mutt.patch
(mbox) Adding cc: JGBSouza <joaosouzaaal2@usp.br> from line 'From: JGBSouza <joaosouzaaal2@usp.br>'
(body) Adding cc: JGBSouza <joaosouzaaal2@usp.br> from line 'Signed-off-by: JGBSouza <joaosouzaaal2@usp.br>'

: JGBSouza <joaosouzaaal2@usp.br>

2 osouzaaal2@usp.br
S| : [PATCH] feat: add file with template configs for mutt
Date: Mon, 22 Dec 2025 23:27:31 -0300
Message-ID: <20251223022807.38905-1- joaosouzaaal2@usp.br>
X-Mailer: git-send-email 2.43.0
MIME-Version: 1.0
Content-Transfer-Encoding: 8bit

.gmail.com
osouzaaal2@usp.br>
:<joaosouzaaal2@usp.br>
: JGBSouza <joaosouzaaal2@usp.br>
: joaosouzaaal2@usp.br

Subject: [PATCH] feat: add file with template configs for mutt
Date: Mon, 22 Dec 2025 23:27:31 -0300
Message-ID: <20251223022807.38905-1-joaosouzaaal2@usp.br>
X-Mailer: git-send-email 2.43.0
MIME-Version: 1.0
Content-Transfer-Encoding: 8bit

Result: 250

Figura 3.6: Resultado do comando send_patch

GNU nano 7.2 /tmp/KMNHKe3S5p/0001-feat-add-file-with-template-configs-for-mutt.patch
6 T 93e95%eee Mon Sep 17 00:00:00 2001

Signed-off-by: JGBSouza <joaosouzaaa

new file mode 18
index 9808000.

Figura 3.7: Arquivo de um patch com alteragdes propostas

relacionados as submissdes de patches e até mesmo os responda através do comando
kw patch_track open-contribution <contribution-id> (Figura 3.8), a0 mesmo tempo em
que o sistema utiliza o mutt como ferramenta auxiliar para automatizar a analise das
mensagens e headers de emails para identificar informacoes relevantes para o fluxo de
atualizacdo de status.

Para viabilizar essa funcionalidade, os pacotes mutt, xvfb e xterm foram adicionados
as dependéncias do projeto. Essas ferramentas sao instaladas automaticamente durante a

39



40

3 | CONTRIBUICOES PARA O KW

instalacdo do kworkflow ao executar o arquivo de setup: ./setup.sh -i?

[PATCH] feat:

Figura 3.8: Abrindo uma contribui¢ao no mutt

Além das dependéncias, um arquivo de configuragio padriao do mutt é criado durante
a instalacdo, contendo os parametros necessarios para autenticagio e leitura de e-mails via
IMAP. O template atual foi configurado para uso com contas do Gmail e define op¢des como
o servidor IMAP, a mailbox padréo e o tipo de armazenamento. Entre as configuracoes
incluidas estdo:

Programa 3.21 arquivo de configuragdes mutt.

# Mutt options to be used with patch-track
imap_user=
imap_pass=

folder="1imaps://imap.gmail.com"
spoolfile="+[Gmail]/Todos os e-mails"
record="+[Gmail]/Sent Mail"
mbox_type="Maildir"

Além dessas configuragdes, durante a primeira execu¢ao do kw patch_track, o usuario
fornecera de maneira interativa o seu imap_user e imap_pass (Figura 3.9), respectivamente
o seu email e a senha de aplicativo gerada para a sua conta do Gmail. Com todas essas
configuragdes definidas, o kw patch-track consegue que o mutt abra diretamente a mailbox
“Todos os e-mails” do Gmail, possibilitando que o usuario visualize suas mensagens pelo
terminal. Paralelamente, o kw patch_track utiliza o mutt de forma programatica para
listar mensagens, extrair headers e identificar respostas, novas versdes e outros elementos
essenciais para o rastreamento automatico dos patches — sem exigir interacdo do usuario
para essas operagdes.

% Esse processo segue o procedimento documentado na pagina oficial de instalacio do kworkflow https:
//kworkflow.org/content/installanduninstall.html


https://kworkflow.org/content/installanduninstall.html
https://kworkflow.org/content/installanduninstall.html

3.3 | KW PATCH TRACK

§ ./setup.sh -1

: ack open-contribution --contribution 2
value "imap_us il@amail.com
value for 'imap_pass': user imap p word

Figura 3.9: Configurando imap_user e imap_pass para o mutt

Definicao de Repositorio

Apos selecionar ou criar uma contribuicdo durante o processo de envio pelo kw
send_patch, o usuario pode definir o repositério associado aquela contribui¢do atra-
vés do comando kw patch-track —set-repository <repository_name:repository_origin_url>
—contribution <contribution_id> (Figura 3.10).

O repositorio definido é armazenado na contribuicéo e, além de melhorar o contexto do
registro das submissdes, permite que em futuras implementacoes esse dado seja utilizado
pelo sistema para determinar o destino previsto para integracdo dos patches e se essa
integracdo ja foi realizada. Essa informacao também auxilia na recuperacdo de contexto
para futuras submissdes vinculadas a mesma contribuicio, garantindo consisténcia no
fluxo de trabalho.

Definicao de Mantenedor

Apos a definicdo do repositorio ligado a contribuicéo, o sistema oferece ao usuario a
possibilidade de indicar um mantenedor responsavel por aquele repositério através do co-
mando kw patch-track —set-maintainer <maintainer_name:maintainer_email> (Figura 3.11).

A associacdo entre repositorio e mantenedor facilita a identificacdo de revisores po-
tenciais, bem como a correlagdo de mensagens relevantes nas threads de e-mail. Embora
nao interfira diretamente no processo de submissdo, essa informacao contribui para uma
melhor organizacdo e para o acompanhamento do fluxo de revisdo, garantindo maior
rastreabilidade no ciclo de vida das contribuicoes. Futuramente, essa informagao pode ser
utilizada para melhor determinar e-mails que identifiquem a aprovacido de uma submissdo
antes de sua integracao final.

Atualizacio Automatica de Status

O sistema implementa uma légica de atualizacdo automatica dos status das contribui-
¢oes através do comando kw patch-track update-contribution <contribution_id>, baseada
em heuristicas inspiradas no fluxo de revisao do kernel Linux (Programa 3.22). Durante
essa etapa, o comando atualiza o status dos patches indivudalmente (Programa 3.23) e,
por fim, o estado final da contribui¢ido (Programa 3.24):

41



42

3 | CONTRIBUICOES PARA O KW

--Last-submission-patches
|Title

ow:git@github.com:k

W patch-track --show-conmtribut
_contribution_title

ast-submission-patches
|Title

Figura 3.10: Identificando o repositério de uma contribuicao

Os estados possiveis para um patch incluem:
« Submetido/Em revisao: atribuido a patches recém-enviados;
« Revisado: mantido enquanto ha respostas na thread sem substitui¢des;

« Aprovado: definido ao detectar respostas contendo marcadores como Reviewed-by
ou Approved,

« Mergeado: atribuido quando a contribuicio correspondente é identificada no repo-
sitério de destino.

Os estados possiveis para uma contribuicao incluem:

+ Submetido / Em revisao: representa o estado inicial ou ativo, aplicado quando
o conjunto de patches ainda nao foi totalmente aprovado ou integrado, e ndo ha
sinalizacdo especifica de revisdo pendente para patches individuais.

« Revisado: indica que o fluxo de feedback foi iniciado, sendo atribuido sempre que
ao menos um patch da contribuicdo for movido para o estado de revisao.

+ Aprovado: definido caso um email de aprovacao tenha sido encontrado e nenhum
patch esteja no estado de revisao.

« Mergeado: definido caso a totalidade dos patches tenha sido integrada com sucesso



3.3 | KW PATCH TRACK

@usp.br --repository 2

Figura 3.11: Identificando o mantenedor de um repositorio

ao repositorio de destino.

Embora o sistema contemple o estado Mergeado, a detecgdo automatica desse evento
ainda nao foi implementada. Inicialmente foi investigada a possibilidade de localizar, no
repositorio, o hash do commit gerado a partir do patch submetido. Contudo, no modelo de
contribuicio do kernel Linux, o commit final costuma ser modificado pelos mantenedores
— 0 hash muda devido a alteracdes no message, ajustes manuais, aplicacdo com -signoff,
rebase ou integracdo via mecanismos internos de manutencgio. Como consequéncia, néo é
possivel inferir de forma confiadvel a correspondéncia direta entre um patch enviado por
e-mail e o commit final integrado ao repositoério, inviabilizando uma heuristica simples
para essa etapa. Além disso, a implementacgao atual também néo realiza distin¢des entre os
remetentes dos e-mails que identifiquem o estado de aprovacdo de um patch, permitindo
com que tanto mantenedores quanto nao mantenedores sejam considerados nesse processo.

Programa 3.22 Codigo update_contribution_status

function update_contribution_status()

{
condition_array=(['id']="S$contribution_id")
contribution_repository_id="$(get_contribution_info 'repository_id'
- 'condition_array')"

cont —

43



44

3 | CONTRIBUICOES PARA O KW

—> cont

condition_array=(['id']="Scontribution_repository_id")
repository_origin_url="$(get_repository_info 'origin_url' 'condition_array')"

submission_id="$(get_last_submission_infos_by_contribution_id 'id'
»  "$contribution_id")" || return 22
condition_array=(['submission_id']="$submission_id")

patch_submission_infos="$(
get_patch_submission_info 'patch_id, submission_id, message_id'
- 'condition_array'

)" || return 22

for patch_id in $patch_submission_infos; do
IFS='|"' read -r patch_id submission_id message_id <<< "$patch_submission_infos"

condition_array=(["'patch_id']="$patch_id"
['submission_id']="$submission_id"
['message_id']="Smessage_1id")
message_id="$(get_patch_submission_info 'message_id' 'condition_array')" ||
- continue

condition_array=(['id']="$patch_1id")
patch_infos="$(get_patch_info 'commit_hash, status' 'condition_array')" ||
» continue

IFS='|"' read -r commit_hash status <<< "S$patch_infos"

final_status="$(
update_patch_status \
"$patch_id" \
"$Smessage_id" \
"Scommit_hash" \

"$status"
)ll
patches_status["$patch_id"]="$final_status"
done

decide_contribution_status "$contribution_id" 'patches_status'
show_contributions_dashboard '' '' "S$Scontribution_id"

Programa 3.23 Codigo update_patch_status

function update_patch_status()

{
if [[ "S$Spatch_current_status" == 'MERGED' ]]; then
printf '%s' 'MERGED'
return 0
fi

cont —



3.3 | KW PATCH TRACK

—> cont
[[ -f '"/tmp/mutt-status' ]] && rm -f '/tmp/mutt-status'

xterm -iconic -e \
sh -c "mutt -F ${MUTT_RC_PATH} \
—e 'push \"1 ((~i ${patch_message_id})|(~x ${patch_message_id})) ~b .x*
o <enter><pause><enter>qg\"' \
; echo finished > /tmp/mutt-status" \
> /dev/null 2>&1 &

while [[ ! -s '/tmp/mutt-status' ]]; do
sleep 0.1
done

mapfile -t reply_files < <(grep -R -1 "In-Reply-To:.x${patch_message_1id}"
o "SKW_MUTT_MESSAGES_DIR")

if [[ "${#reply_files[@]}" -eq 0 ]]; then
set_patch_status "$patch_id" 'SENT'
printf '%s' 'SENT'
return 0

fi

for file 1in "${reply_files[@]}"; do
if grep -Eiw "Approved|Reviewed-by" "$file" > /dev/null 2>&1; then
set_patch_status "$patch_id" 'APPROVED'
printf '%s' 'APPROVED'
return 0
fi
done

last_msg_file=$(printf '%s\n' "${reply_files[@]}" |
xargs -d '\n' stat --format='%Y %n' 2> /dev/null |

sort -n |
tail -n1 |
cut -d' ' -f2-)

if [[ -z "$last_msg_file" ]]; then
set_patch_status "S$patch_id" 'SENT'
printf '%s' 'SENT'
return 0

fi

last_author=$(grep -i '"AFrom:' "$last_msg_file" |
sed —-E 's/From: . x<([A>]+)>.x/\1/")

if [[ "Slast_author" == "$§{patch_track_mutt_config['imap_user']}" ]]; then
set_patch_status "$patch_id" 'SENT'
printf '%s' 'SENT'
else
set_patch_status "$patch_id" 'REVIEWED'
printf '%s' 'REVIEWED'
fi

cont —



46

3 | CONTRIBUICOES PARA O KW

—> cont

return 0

Programa 3.24 Codigo decide_contribution_status

function decide_contribution_status()
{
local contribution_id="s$1"
local -n _contribution_patches_status="$2"
local has_revisado=0
local has_aprovado=0
local has_mergeado=0
local has_sent=0

for pid 1in "${!_contribution_patches_status[@]}"; do
case "${_contribution_patches_status[$pid]}" in
REVIEWED) has_revisado=1 j;;
APPROVED) has_aprovado=1 ;;
MERGED) has_mergeado=1 ;;
SENT) has_sent=1 ;;
esac
done

if [[ Shas_revisado -eq 1 ]]; then
contribution_status="REVIEWED"

elif [[ $has_aprovado -eq 1 ]]; then
contribution_status="APPROVED"

elif [[ $has_sent -eq 1 ]]; then
contribution_status="SENT"

elif [[ $has_mergeado -eq 1 1]
contribution_status="MERGED"

fi

condition_array=(['id']="S$contribution_id")
set_contribution_status "S$contribution_id" "$contribution_status"

return 0

Atualizacao Manual de Status

Além da atualizacdo automatica baseada em heuristicas, é desejavel oferecer ao usuario
a possibilidade de ajustar manualmente o status de um patch. Essa funcionalidade per-
mitiria corrigir interpretacdes equivocadas da heuristica, lidar com casos excepcionais e
manter controle total sobre o histdrico de evolugido de cada contribuicdo. Uma interface
de atualizacdo manual complementaria a logica automatica sem substitui-la, fornecendo
maior flexibilidade operacional (Figura 3.12).



3.3 | KW PATCH TRACK

arquivo

'"MERGED' - -1i

Figura 3.12: Atualizacdo manual do status de um patch via Kw patch-track

3.3.4 Proximos Passos

Atualmente, o patch-track encontra-se estruturado com um objetivo claro e funcionali-
dades essenciais de rastreamento. No entanto, para evoluir para uma versao de uso pleno,
é fundamental expandir a liberdade de edicdo e a flexibilidade da ferramenta, permitindo
que o usuario gerencie o ciclo de vida das informacdes de forma mais autonoma. Entre
os pontos de desenvolvimento futuros, destacam-se:

Flexibilidade na Gestao de Dados e Experiéncia do Usuario
Permitir mais flexibilidade do usuario para editar dados registrados, como, por exemplo:

« Renomeacio de Contribuicdes: Implementar a capacidade de renomear contribui-
¢Oes existentes. Como o nome da contribuicdo possui valor apenas para a organizacio
pessoal do desenvolvedor, essa funcionalidade permitiria correcdes ap6s a criacao
sem impactar a logica técnica do sistema.

« Realocaciao de Submissdes: Permitir que o usuario mova submissdes de uma
contribuicdo para outra. Esta melhoria de experiéncia do usuario (UX) é vital para
corrigir erros de identificacdo ocorridos durante o envio de patches via kw send-
patch, garantindo que o histérico de evolucéo reflita o agrupamento pretendido.

47



48

3 | CONTRIBUICOES PARA O KW

« Gestao de Mantenedores e Repositorios: Expandir as capacidades de edicio e
exclusdo para as entidades de mantenedores e repositorios. Isso inclui a alteracao de
metadados (como e-mails e URLs) e a remogéao de registros obsoletos ou duplicados,
mantendo a base de dados limpa e atualizada conforme a rotatividade organica dos
subsistemas do kernel.

« Edicao de Metadados de Contribuicao: Oferecer uma interface para ajustar infor-
magdes vinculadas a contribuigao apods sua criacdo, como a mudancga do repositorio
de destino ou do mantenedor associado, conferindo maior resiliéncia a mudancas de
contexto no fluxo de trabalho.

Automatizacao do Rastreio de Integracio (Merge)

Implementar mecanismos para localizar automaticamente o ponto de integragéo de-
finitiva de um patch no historico de ramos (branches) do repositorio. Como o ciclo de
vida de uma contribui¢do no kernel é concluido apenas com o merge em arvores estaveis
ou de subsistemas, essa funcionalidade permitiria que o patch-track fechasse o ciclo de
monitoramento de forma auténoma, informando ao usuéario precisamente em qual versdo
do codigo sua contribuicao foi incorporada.

Aprimoramento da Corretude das Heuristicas de Aprovacao

Evoluir a logica de analise de mensagens para aumentar a confiabilidade na transicdo de
estados. Atualmente baseada em buscas por padroes textuais, a heuristica deve ser refinada
para validar se o autor de uma mensagem de aprovagido (como Acked-by ou Reviewed-
by) corresponde ao mantenedor previamente associado ao repositério. Adicionalmente,
prevé-se a integracdo do kw com plataformas de revisido e bancos de dados de listas
de discussdo (como o lore.kernel.org ou instancias do Patchwork), permitindo o uso de
metadados estruturados e marcadores especificos que garantam um julgamento de status
imune a falso-positivos de conversas casuais nas threads de e-mail.

Segmentacao de Contexto via Mailboxes Especificas:

Implementar o suporte a organizacio de mensagens em caixas de correio (mailboxes)
dedicadas exclusivamente aos fluxos de cada contribuicio ou projeto. Atualmente, a inte-
gracao com o mutt pode exigir a varredura de caixas de entrada genéricas com volumes
massivos de dados, tipicos de listas de discussdo do kernel. Ao viabilizar o isolamento das
comunicagdes em pastas especificas, o patch-track permitiria que o mutt operasse com um
contexto de dados reduzido, otimizando significativamente a performance de indexagéo
e a agilidade da interface. Além disso, essa delimitagdo de escopo aumentaria a eficién-
cia das heuristicas de analise automatica, que passariam a processar apenas mensagens
previamente filtradas e relevantes ao histdrico do usuario.

3.3.5 Resultados

Com a introdugao do kw patch track, o processo de contribuicdo via kw deve tornar-se
mais organizado e automatizado. A ferramenta deve permitir acompanhar o ciclo de vida de
cada patch de forma centralizada, eliminando a necessidade de acompanhamento manual



3.3 | KW PATCH TRACK

e reduzindo o risco de perda de informacdes, apresentando maior clareza e rastreabilidade
no fluxo de revisdes, economia de tempo no acompanhamento de submissdes, historico
completo e versionado de cada contribuicdo, uma base estruturada para analise estatistica
e integracao futura com outras ferramentas, além de um ambiente mais unificado para
colaboracdo no kernel, reduzindo dependéncias de outras ferramentas, como softwares
gerenciadores de email.

49






Capitulo 4

Consideracoes Finais

Esse trabalho apresentou de forma geral, uma analise sobre o kernel Linux, explorando a
sua importancia e relevancia no cenario, suas etapas de desenvolvimento, denominadas por
Feitelson (FEITELSON, 2012) como modelo de desenvolvimento perpétuo até o lancamento
de suas versdes para o usuario final, os stable kernels. Nesse processo, também foi discutido a
relevancia do seu desenvolvimento como software livre, o que influencia significativamente
a sua segmentacdo em diversos componentes e o seu modelo de contribuicdo para permitir
a colaboragdo de uma comunidade de desenvolvedores em sua implementacdo. Ainda
nessa analise, evidencia-se também a complexidade que o sistema adquiriu ao longo dos
anos, exigindo uma grande carga de conhecimento técnico e pratico antes que possam
de fato desenvolver para o sistema.

Nesse contexto, diversas ferramentas surgem de forma a mitigar as dificuldades as-
sociadas a esse fluxo de contribuicdo. Dentre essas ferramentas, o Kworkflow se destaca
pela busca em oferecer uma interface Unica e integrada para todas essas dificuldades.
Para isso, o kw é construido como um hub modular, integrando funcionalidades locais e
externas, oferecendo suporte tanto a tarefas praticas — como a compilacdo e o deploy de
versoes do kernel — quanto a processos indiretos, como a submissdo de patches, através
de comandos de terminal.

Entretanto, compreender e automatizar integralmente o ciclo de contribui¢io ainda
constitui um desafio que o kw busca superar. Dentre as dificuldades ainda ndo mapeadas,
uma das etapas mais criticas é o gerenciamento de patches ap6s a submisséo, periodo em
que as contribui¢des passam por revisdes e discussdes por parte dos mantenedores e da
comunidade de desenvolvedores. Dada a insuficiéncia das ferramentas de gerenciamento
de versdo em suprir as necessidades de um software com as dimensdes do kernel Linux,
hoje, as contribui¢des para a ferramenta sdo submetidas através de listas de email, o que
representam dificuldades ainda mais significativas para este processo, como a dependéncia
de ferramentas externas ndo gerenciaveis, a baixa rastreabilidade e controle das submissdes,
escalabilidade limitada, além de representar uma ruptura no fluxo de desenvolvimento,
que o kw pretende englobar.

Este trabalho d4 continuidade ao desenvolvimento do Kworkflow, integrando-se a
linha de evolugédo de projetos anteriores, como Simplificando o processo de contribuicdo

51



52

4 | CONSIDERACOES FINAIS

para o kernel Linux (NETO, 2022) e Integrating the Kworkflow system with the Lore archives
(BARROS TADOKORO, 2023). Esses trabalhos estabeleceram as bases estruturais do sistema,
consolidando o uso de um banco de dados interno, a automatizacdo do envio de patches por
e-mail e a integracdo com os arquivos de discussdo oficiais do kernel, sobre as quais o pre-
sente estudo se apoia. Ao compreender a etapa de revisdo dos patches, esse trabalho integra
de forma completa o processo de gestdo de contribui¢des, permitindo analises holisticas do
processo, alinhando-se para permitir o carater de software cientifico almejado pelo kw.

A primeira contribuicdo foca na melhoria do sistema de CRUD do banco de dados.
Apesar do Kworkflow ja contar com funcdes que permitiam interacdo com o SQLite3,
essas fung¢des nédo isolavam suficientemente o codigo das instrucdes de acesso aos dados,
exigindo insercao de trechos SQL (por exemplo, uso de clausulas WHERE) diretamente
nos comandos de selecdo. Para corrigir isso, os comandos de leitura foram parametrizados
para aceitar as buscas com o parametro de especificacaio WHERE, ordenacdo dos resultados
com o uso do parametro ORDER BY e limite de itens na resposta com o parametro LIMIT,
além da refatoracdo para permitir que tanto o processo de remocdo aceitasse comparacoes
além da igualdade (>, <, >=, <=, !=) e combinacdes de critérios mais complexas. Além
disso, foi incorporado também o método update_into para permitir alteracdes pontuais
de atributos em uma entidade. Essas mudancas melhoraram o fluxo de interagdo com o
banco de dados, viabilizando implementagdes subsequentes para esse trabalho, como o kw
manage contacts e o kw patch track, que dependem de buscas parametrizaveis, ordenacao
e limites para operar corretamente.

A segunda contribuicdo, o kw manage-contacts, é uma ferramenta de suporte, per-
mitindo a coordenacao de grupos e contatos de contribuidores. Ainda que a ferramenta
ja possuisse suporte para envio das submissdes para mantenedores responsaveis, isso
nao atende alguns grupos néo oficiais, como, por exemplo, colegas de trabalho ou outros
grupos externos envolvidos com o patch. Como solugéo, a ferramenta kw manage_contacts
foi desenvolvida, utilizando-se do sistema de banco de dados para armazenar os dados
dos contatos e grupos criados pelo usuario bem como das suas relacdes, denominando
de quais grupos cada contato faz parte. Essa ferramenta também se integra diretamente
com o sistema de submissdes de patches, kw manage-contacts, permitindo, através dos
comandos to-groups e cc-groups, que grupos sejam passados como parametro de submissao,
garantindo uma submissdo muito mais simples e coesa através do terminal de comandos,
garantindo corretude nas submissdes ao evitar que os contatos precisem ser digitados
um a um de forma manual.

Com foco mais especifico no problema das listas de e-mail como principal método de
contribuicdo para o kernel Linux, a terceira implementacao deste trabalho, o kw patch-
track, funciona como uma camada de gerenciamento local das submissdes do usuario. O
modulo foi projetado para operar de forma integrada ao fluxo de envio do kw send-patch,
registrando as submissdes e utilizando técnicas de raspagem de dados (data scraping) nos
arquivos temporarios gerados durante o processo para extrair metadados e persisti-los
no banco de dados.

Ainda em estagio de refinamento de heuristicas, a ferramenta oferece um sistema de
atualizacdo automatica de estados através do comando kw patch-track -update. Este
comando processa as mensagens recebidas para identificar o estagio atual de cada patch,



4 | CONSIDERACOES FINAIS

embora a corretude total dessas transicoes dependa da evolucédo dos algoritmos de analise
textual. Complementarmente, a integracdo com o mutt via comando kw patch-track
-open-contribution viabiliza uma interface terminal para que o usuario visualize e
responda a revisdes de forma contextualizada. Esta arquitetura visa mitigar a dependéncia
de ferramentas externas e manuais no acompanhamento de contribui¢des, fornecendo
uma base solida para a extracdo de dados estruturados, ainda que o escopo atual do projeto
preveja futuras expansdes para suportar maior granularidade no histérico de interacoes
e na precisao dos julgamentos automaticos.

A introducgdo dessas ferramentas ao Kworkflow traz impactos significativos tanto
para contribuidores experientes quanto para novos participantes do desenvolvimento
do kernel Linux. Ao centralizar operacdes que antes dependiam de multiplos proces-
sos externos — como consultas manuais de listas de e-mail, organizagao de grupos de
contatos e acompanhamento de revisdes de patches — o sistema reduz o overhead de
contribuintes recém-chegados, simplificando a configuragio inicial e a compreensao do
fluxo de submissao. O kw manage-contacts garante que grupos de destinatarios recorrentes
possam ser aplicados automaticamente, evitando erros manuais e agilizando a comunicacao,
enquanto o kw patch-track oferece rastreabilidade completa das contribui¢des, permitindo
que o usuario visualize o historico de submissdes, respostas e revisdes sem recorrer a
ferramentas externas.

De forma geral, essas implementacdes ajudam a consolidar a proposta do Kworkflow
de oferecer uma solucdo unificada e integrada para o ciclo de contribuicdo ao kernel
Linux, promovendo maior previsibilidade, consisténcia e eficiéncia. Ao reduzir tarefas
repetitivas e centralizar informacdes criticas, as ferramentas aumentam a produtividade,
diminuem a curva de aprendizado e fornecem uma base sélida para automacdes e analises
futuras. Dessa maneira, o trabalho nao apenas melhora a experiéncia do desenvolvedor
individual, mas também fortalece o ecossistema colaborativo do kernel, evidenciando
a importancia de solucdes que conectem de forma coerente os diversos elementos do
processo de desenvolvimento em um fluxo continuo e gerenciavel.

53






Referéncias

[AvATAVULUI et al. 2023] Cristian AVATAVULUI et al. “Open-source and closed-source
projects: a fair comparison”. Journal of Information Systems & Operations Manage-
ment 17.2 (dez. de 2023) (citado na pg. 5).

[BArRrROs TaADOKORO 2023] David de BARROs TADOKORO. Integrating the kworkflow sys-
tem with the lore archives: enhancing the linux kernel developer interaction with
mailing lists. Monografia Final. Institute of Mathematics and Statistics, Bachelor of
Computer Science. Supervisor: Paulo Meirelles. Co-supervisor: Rodrigo Siqueira.
2023 (citado nas pgs. 3, 13, 17, 52).

[DEVINENT 2020] Siva Karthik DEVINENI. “Version control systems (vcs) the pillars of
modern software development: analyzing the past, present, and anticipating future
trends”. International Journal of Science and Research 9.12 (2020), pp. 1816—1829.
por: 10.21275/SR24127210817 (citado na pg. 15).

[FEITELSON 2012] Dror G. FEITELSON. “Perpetual development: a model of the linux
kernel life cycle”. Journal of Systems and Software 85.4 (2012), pp. 859-875. URL:
https://www.cs.huji.ac.il/~feit/papers/LinuxDev12JSS.pdf (citado nas pgs. 2, 7,
51).

[FounpaTION 2023] Free Software FOUNDATION. A Defini¢do de Software Livre. Acesso
em: 22 dez. 2025. 2023. URL: https://www.gnu.org/philosophy/free-sw.pt-br.html
(citado na pg. 5).

[GReG KroaH HARTMAN 2016] GREG KrROAH HARTMAN. Kernel Recipes 2016 - Patches
carved into stone tablets... - Greg KH. Acessado em: 03 set. 2025. 2016. URL: https:
//youtu.be/L800zaqS37s?si=zPnlcyGllu7llcmK (acesso em 03/09/2025) (citado
nas pgs. 3, 15, 16).

[KrRoaH-HARTMAN 2018] Greg KroaH-HARTMAN. Linux Kernel Development. Acesso
em: 12 dez. 2021. 2018. URL: https://github.com/gregkh/kernel-development/blob/
bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf (citado nas

pgs. v, 9).

[KroaH-HARTMAN 2025] Greg KrRoAH-HARTMAN. kernel-history: Linux kernel history
logs and stats. Repositorio GitHub. Acesso em: 06 set. 2025. 2025. URL: https:
//github.com/gregkh/kernel-history (citado na pg. 15).

55


https://doi.org/10.21275/SR24127210817
https://www.cs.huji.ac.il/~feit/papers/LinuxDev12JSS.pdf
https://www.gnu.org/philosophy/free-sw.pt-br.html
https://youtu.be/L8OOzaqS37s?si=zPnIcyGIlu7lIcmK
https://youtu.be/L8OOzaqS37s?si=zPnIcyGIlu7lIcmK
https://github.com/gregkh/kernel-development/blob/bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf
https://github.com/gregkh/kernel-development/blob/bd8d3673b33fa641d06046fa4bff103f78ec4e89/kernel-development.pdf
https://github.com/gregkh/kernel-history
https://github.com/gregkh/kernel-history

56

REFERENCIAS

[NETO 2022] Rubens Gomes NETo. Simplificando o processo de contribuicdo para o kernel
linux: a evolugdo da ferramenta kernelworkflow. Monografia Final. MAC 499 — Tra-
balho de Formatura Supervisionado. Supervisor: Paulo Meirelles. Cossupervisor:
Rodrigo Siqueira. 2022 (citado nas pgs. 3, 17, 52).

[Passos et al. 2025] Rafael Passos, Arthur PiLoNE, David TADOKORO e Paulo MEIRELLES.
“ Streamlining Analyses on the Linux Kernel with DUKS ”. In: 2025 IEEE Working
Conference on Software Visualization (VISSOFT). Los Alamitos, CA, USA: IEEE
Computer Society, set. de 2025, pp. 125-128. por: 10.1109/VISSOFT67405.2025.
00025. URL: https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.
00025 (citado na pg. 1).

[SILBERSCHATZ et al. 2018]  A. SILBERSCHATZ, P.B. GALVIN e G. GAGNE. Operating System
Concepts. Wiley, 2018. 1sBN: 9781119124894. URL: https://books.google.com.br/
books?id=FHJIDWAAQBA] (citado na pg. 1).

[TADOKORO et al. 2025] David Tapokoro, Rodrigo SIQUEIRA e Paulo MEIRELLES.
“Kworkflow: a linux kernel developer automation workflow system”. In: Pro-
ceedings of the Free Software Competence Center, Institute of Mathematics and
Statistics, University of Sao Paulo. University of Sdo Paulo. Sdo Paulo, Brazil, 2025
(citado nas pgs. 12, 14).

[TAN et al. 2020] Xin TaN, Minghui ZHOU e Brian FITZGERALD. “Scaling open source
communities: an empirical study of the linux kernel”. In: Proceedings of the 42nd In-
ternational Conference on Software Engineering (ICSE 2020). ACM / IEEE Computer
Society, 2020, pp. 1222-1234. po1: 10.1145/3377811.3380920 (citado na pg. 6).

[TANENBAUM e Bos 2023] A.S. TANENBAUM e H. Bos. Modern Operating Systems, Global
Edition. Pearson Education, 2023. 1sBN: 9781292727899. URL: https://books.google.
com.br/books?id=cHa2EAAAQBA] (citado na pg. 1).

[THE LiINuX KERNEL DOCUMENTATION 2023] THE LINUX KERNEL DOCUMENTATION.
How the development process works. Parte de “A guide to the Kernel Development
Process” — versao v4.14. 2023. URL: https://www.kernel.org/doc/html/v6.17/
process/2.Process.html (acesso em 04/09/2025) (citado nas pgs. 7-9).

[TorvaLDs 1991a] L. TorvALDS. Free minix-like kernel sources for 386-AT. Email enviado
para o newsgroup comp.os.minix. Arquivado em LWN.net: https://lwn.net/2001/
0823/a/lt-release.php3. Out. de 1991 (citado na pg. 1).

[TorvaLDs 1991b] L. TorvaLps. What would you like to see most in minix? Email enviado
para o newsgroup comp.os.minix. Arquivado em LWN.net: https://lwn.net/2001/
0823/a/lt-announcement.php3. Ago. de 1991 (citado na pg. 1).


https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.org/10.1109/VISSOFT67405.2025.00025
https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.00025
https://doi.ieeecomputersociety.org/10.1109/VISSOFT67405.2025.00025
https://books.google.com.br/books?id=FHJlDwAAQBAJ
https://books.google.com.br/books?id=FHJlDwAAQBAJ
https://doi.org/10.1145/3377811.3380920
https://books.google.com.br/books?id=cHa2EAAAQBAJ
https://books.google.com.br/books?id=cHa2EAAAQBAJ
https://www.kernel.org/doc/html/v6.17/process/2.Process.html
https://www.kernel.org/doc/html/v6.17/process/2.Process.html
https://lwn.net/2001/0823/a/lt-release.php3
https://lwn.net/2001/0823/a/lt-release.php3
https://lwn.net/2001/0823/a/lt-announcement.php3
https://lwn.net/2001/0823/a/lt-announcement.php3

	Introdução
	Fundamentação Teórica
	Software livre
	Processo de contribuição em Software Livre

	O Kernel Linux
	O Modelo de desenvolvimento do kernel Linux
	Contribuindo para o Kernel Linux


	Kernel Workflow
	Arquitetura
	Funcionalidades
	O problema da contribuição no desenvolvimento de software livre

	Contribuições para o kw
	CRUD banco de dados
	KW Manage Contacts
	Objetivos
	Arquitetura
	Funcionalidades
	Enviar patches para grupos
	Resultados

	KW Patch track
	Objetivos
	Arquitetura
	Funcionalidades
	Próximos Passos
	Resultados


	Considerações Finais
	Referências

